A Locus in Human Extrastriate Cortex for Visual Shape Analysis

Positron emission tomography (PET) was used to locate an area in human extrastriate cortex that subserves a specific component process of visual object recognition. Regional blood flow increased in a bilateral extrastriate area on the inferolateral surface of the brain near the border between the occipital and temporal lobes (and a smaller area in the right fusiform gyms) when subjects viewed line drawings of 3-dimensional objects compared to viewing scrambled drawings with no clear shape interpretation. Responses were Seen for both novel and familiar objects, implicating this area in the bottom-up (i.e., memory-independent) analysis of visual shape.

[1]  M. Potter Short-term conceptual memory for pictures. , 1976, Journal of experimental psychology. Human learning and memory.

[2]  J. G. Snodgrass,et al.  A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. , 1980, Journal of experimental psychology. Human learning and memory.

[3]  J. G. Snodgrass,et al.  A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. , 1980 .

[4]  M. C. Smith,et al.  Tracing the time course of picture--word processing. , 1980, Journal of experimental psychology. General.

[5]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[6]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[7]  J. Fodor The Modularity of mind. An essay on faculty psychology , 1986 .

[8]  W. Glaser,et al.  The time course of picture-word interference. , 1984 .

[9]  J. Mazziotta,et al.  A Noninvasive Positron Computed Tomography Technique Using Oxygen-15-Labeled Water for the Evaluation of Neurobehavioral Task Batteries , 1985, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[11]  M Corbetta,et al.  Attentional modulation of neural processing of shape, color, and velocity in humans. , 1990, Science.

[12]  S. Petersen,et al.  Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli. , 1990, Science.

[13]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[14]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  Martha J. Farah,et al.  Cognitive Neuropsychology: Patterns of Co-occurrence Among the Associative Agnosias: Implications for Visual Object Representation , 1991 .

[16]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[17]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[18]  F M Miezin,et al.  Activation of the hippocampus in normal humans: a functional anatomical study of memory. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Sergent,et al.  Functional neuroanatomy of face and object processing. A positron emission tomography study. , 1992, Brain : a journal of neurology.

[20]  J. Mazziotta,et al.  Rapid Automated Algorithm for Aligning and Reslicing PET Images , 1992, Journal of computer assisted tomography.

[21]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[22]  J. Mazziotta,et al.  Automated image registration , 1993 .

[23]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[24]  Simon R. Cherry,et al.  Improved Detection of Focal Cerebral Blood Flow Changes Using Three-Dimensional Positron Emission Tomography , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[25]  Martha J. Farah,et al.  Associative Visual Agnosia and Alexia Without Prosopagnosia , 1994, Cortex.

[26]  T. Allison,et al.  Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. , 1994, Cerebral cortex.

[27]  Leslie G. Ungerleider,et al.  The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  S. Pinker The Language Instinct , 1994 .

[29]  S M Kosslyn,et al.  Identifying objects seen from different viewpoints. A PET investigation. , 1994, Brain : a journal of neurology.

[30]  Richard S. J. Frackowiak,et al.  Brain activity during reading. The effects of exposure duration and task. , 1994, Brain : a journal of neurology.

[31]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[32]  G. Winocur,et al.  Dissociation of pathways for object and spatial vision: a PET study in humans , 1995, Neuroreport.

[33]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Daniel L. Schacter,et al.  Brain regions associated with retrieval of structurally coherent visual information , 1995, Nature.

[35]  Josh H. McDermott,et al.  Functional imaging of human visual recognition. , 1996, Brain research. Cognitive brain research.

[36]  Leslie G. Ungerleider,et al.  Neural correlates of category-specific knowledge , 1996, Nature.

[37]  T. Allison,et al.  Face-Specific Processing in the Human Fusiform Gyrus , 1997, Journal of Cognitive Neuroscience.

[38]  M. Posner,et al.  Brain Mechanisms of Cognitive Skills , 1997, Consciousness and Cognition.

[39]  Leslie G. Ungerleider,et al.  What fMRI has taught us about human vision , 1997, Current Opinion in Neurobiology.

[40]  Keiji Tanaka Mechanisms of visual object recognition: monkey and human studies , 1997, Current Opinion in Neurobiology.

[41]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[42]  Glyn W Humphreys,et al.  AGNOSIA WITHOUT PROSOPAGNOSIA OR ALEXIA: EVIDENCE FOR STORED VISUAL MEMORIES SPECIFIC TO OBJECTS. , 1998, Cognitive neuropsychology.

[43]  Guy A. Orban,et al.  The neuronal machinery involved in successive orientation discrimination , 1998, Progress in Neurobiology.

[44]  G. Orban,et al.  Regions in the human brain activated by simultaneous orientation discrimination: a study with positron emission tomography , 1998, The European journal of neuroscience.

[45]  S. Edelman,et al.  Cue-Invariant Activation in Object-Related Areas of the Human Occipital Lobe , 1998, Neuron.

[46]  J. Bogousslavsky,et al.  Syndromes majeurs de l'hémisphère mineur , 2005 .