Total Energies and Atom Locations at Solid Surfaces

[1]  J. H. Rose,et al.  Nuclear equation of state from scaling relations for solids , 1984 .

[2]  I. P. Batra First-principles calculation of energy of an epitaxial system , 1984 .

[3]  D. Hamann,et al.  Quantum-size effects in work functions of free-standing and adsorbed thin metal films , 1984 .

[4]  Joshua R. Smith,et al.  Can desorption be described by the local density formalism , 1984 .

[5]  John R. Smith,et al.  Universal features of bonding in metals , 1983 .

[6]  U. Landman,et al.  Multilayer lattice relaxation at metal surfaces: A total-energy minimization , 1983 .

[7]  G. E. Becker,et al.  Geometry of the Ag)001)-c(2 x 2)Cl structure as as determined by He diffraction , 1983 .

[8]  P. Feibelman Static quantum-size effects in thin crystalline, simple-metal films , 1983 .

[9]  B. Delley,et al.  Binding energy and electronic structure of small copper particles , 1983 .

[10]  John P. Perdew,et al.  Variational calculations of low-index crystal face-dependent surface energies and work functions of simple metals , 1981 .

[11]  K. Bohnen,et al.  Self-consistent study of surfaces of simple metals by the density-matrix method: (100) and (110) surfaces of Na, K, Rb, and Cs , 1980 .

[12]  D. Hamann,et al.  Site and nature of H bonding on Ti (0001) , 1980 .

[13]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[14]  D. Hamann,et al.  Electronic structure of the Cu(111) surface , 1978 .

[15]  F. Jona,et al.  Trends in metal surface relaxation , 1984 .