Série Scientifique Scientific Series 2003 s-02 Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions

A general estimation approach combining the attractive features of method of moments with the efficiency of ML is proposed. The moment conditions are computed via the characteristic function. The two major difficulties with the implementation is that one needs to use an infinite set of moment conditions leading to the singularity of the covariance matrix in the GMM context, and the optimal instrument yielding the ML efficiency was previously shown to depend on the unknown probability density function. We resolve the two problems simultaneously in the framework of C-GMM (GMM with a continuum of moment conditions). First, we prove asymptotic properties of the C-GMM estimator applied to dependent data and then provide a reformulation of the estimator that enhances its computational ease. Second, we propose to span the unknown optimal instrument by an infinite basis consisting of simple exponential functions. Since the estimation framework already relies on a continuum of moment conditions, adding a continuum of spanning functions does not pose any problems. As a result, we achieve ML efficiency when we use the values of conditional CF indexed by its argument as moment functions. We also introduce HAC-type estimators so that the estimation methods are not restricted to settings involving martingale difference sequences. Hence, our methods apply to Markovian and nail-Markovian dynamic models. Finally, a simulated method of moments type estimator is proposed to deal with the cases where the characteristic function does not have a closed-form expression. Extensive Monte-Carlo study based on the models typically used in term-structure literature favorably documents the performance of our methodology. L'estimation des processus de diffusion (affine ou a sauts) est problematique car l'expression de la vraisemblance n'est pas disponible. D'un autre cote, la fonction caracteristique de ces modeles est souvent connue. Cet article propose un estimateur du type methode des moments generalises (GMM) fonde sur la fonction caracteristique. Comme l'on dispose d'un continuum de conditions de moments, on utilise une methode specifique appelee C-GMM. On derive les proprietes asymptotiques de l'estimateur et discute son implementation en pratique. Dans le contexte d'un processus markovien, une condition de moment conditionnelle resulte de la fonction caracteristique conditionnelle. Une question importante est le choix de l'instrument optimal. On montre que, lorsque l'instrument est une fonction exponentielle, l'estimateur C-GMM est asymptotiquement aussi efficace que l'estimateur du maximum de vraisemblance. Il faut noter que la methode C-GMM n'est pas limitee aux processus markoviens et s'applique a des modeles dynamiques tres generaux. De plus, on propose une methode des moments simules qui permet de traiter le cas ou l'expression de la fonction caracteristique n'est pas connue. Finalement, une etude de Monte Carlo sur des modeles frequemment utilises en finance montre que notre estimateur a de bonnes proprietes.

[1]  J. Detemple,et al.  Asymptotic Properties of Monte Carlo Estimators of Diffusion Processes , 2006 .

[2]  P. Glynn,et al.  Estimation of Continuous-Time Markov Processes Sampled at Random Time Intervals , 2004 .

[3]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[4]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[5]  Jun Yu Empirical Characteristic Function Estimation and Its Applications , 2003 .

[6]  Jacob T. Schwartz,et al.  Linear operators. Part II. Spectral theory , 2003 .

[7]  J. Florens,et al.  Nonparametric Instrumental Regression , 2010 .

[8]  D. Duffie,et al.  Affine Processes and Application in Finance , 2002 .

[9]  A. Gallant,et al.  Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes , 2002 .

[10]  Yacine Ait-Sahalia,et al.  The Effects of Random and Discrete Sampling When Estimating Continuous-Time Diffusions , 2002 .

[11]  G. J. Jiang,et al.  Estimation of Continuous-Time Processes via the Empirical Characteristic Function , 2002 .

[12]  Jean-Pierre Florens,et al.  Efficient GMM Estimation Using the Empirical Characteristic Function , 2002 .

[13]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .

[14]  P. Carr,et al.  Time-Changed Levy Processes and Option Pricing ⁄ , 2002 .

[15]  Yacine Aït-Sahalia Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach , 2002 .

[16]  Michael W. Brandt,et al.  Simulated Likelihood Estimation of Diffusions with an Application to Exchange Rate Dynamics in Incomplete Markets , 2001 .

[17]  K. Singleton Estimation of affine asset pricing models using the empirical characteristic function , 2001 .

[18]  M. Yor,et al.  Stochastic Volatility for Levy Processes , 2001 .

[19]  Jun Pan The Jump-Risk Premia Implicit in Options : Evidence from an Integrated Time-Series Study , 2001 .

[20]  Hao Zhou Finite sample properties of EMM, GMM, QMLE and MLE for a square-root interest rate diffusion model , 2001 .

[21]  J. Florens,et al.  GENERALIZATION OF GMM TO A CONTINUUM OF MOMENT CONDITIONS , 2000, Econometric Theory.

[22]  G. Duffee Term premia and interest rate forecasts in affine models , 2000 .

[23]  Michael S. Johannes A Nonparametric View of the Role of Jumps to Interest Rates , 2000 .

[24]  Luis M. Viceira,et al.  Spectral GMM Estimation of Continuous-Time Processes , 1999 .

[25]  N. Shephard,et al.  Likelihood INference for Discretely Observed Non-linear Diffusions , 2001 .

[26]  J. Zakoian,et al.  QUASI-INDIRECT INFERENCE FOR DIFFUSION PROCESSES , 1998, Econometric Theory.

[27]  A. Gallant,et al.  Reprojecting Partially Observed Systems with Application to Interest Rate Diffusions , 1998 .

[28]  Yacine Aït-Sahalia Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-Form Approach , 1998 .

[29]  Maximum-Likelihood Estimation of Discretely Sampled Diffusions: A Closed-Form Approach , 1998 .

[30]  Halbert L. White, Jr.,et al.  CENTRAL LIMIT AND FUNCTIONAL CENTRAL LIMIT THEOREMS FOR HILBERT-VALUED DEPENDENT HETEROGENEOUS ARRAYS WITH APPLICATIONS , 1997, Econometric Theory.

[31]  K. Singleton,et al.  Specification Analysis of Affine Term Structure Models , 1997 .

[32]  Timothy G. Conley,et al.  Short-term interest rates as subordinated diffusions , 1997 .

[33]  A. Gallant,et al.  Estimating stochastic differential equations efficiently by minimum chi-squared , 1997 .

[34]  A. Genz,et al.  Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight , 1996 .

[35]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[36]  Sanjiv Ranjan Das,et al.  Exact solutions for bond and option prices with systematic jump risk , 1996 .

[37]  A. Gallant,et al.  Which Moments to Match? , 1995, Econometric Theory.

[38]  D. Duffie,et al.  A Yield-factor Model of Interest Rates , 1996 .

[39]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[40]  Yacine Aït-Sahalia Nonparametric Pricing of Interest Rate Derivative Securities , 1995 .

[41]  C. Gouriéroux,et al.  Série Scientifique Scientific Series N o 95 s-32 MARKET TIME AND ASSET PRICE MOVEMENTS THEORY AND ESTIMATION , 1995 .

[42]  E. Ghysels,et al.  Stochastic Volatility and time Deformation: an Application of trading Volume and Leverage Effects , 1994 .

[43]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[44]  M. Yor,et al.  BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .

[45]  L. Hansen,et al.  Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes , 1993 .

[46]  Michel Mouchart,et al.  Noncausality and Marginalization of Markov Processes , 1993, Econometric Theory.

[47]  J. I. Ramos,et al.  Introduction to Hilbert spaces with applications , 1992 .

[48]  D. Andrews Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .

[49]  A. Feuerverger,et al.  An efficiency result for the empirical characteristic function in stationary time-series models , 1990 .

[50]  D. Duffie,et al.  Simulated Moments Estimation of Markov Models of Asset Prices , 1990 .

[51]  A. Lo Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data , 1986, Econometric Theory.

[52]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[53]  L. Hansen A method for calculating bounds on the asymptotic covariance matrices of generalized method of moments estimators , 1985 .

[54]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[55]  George Tauchen,et al.  THE PRICE VARIABILITY-VOLUME RELATIONSHIP ON SPECULATIVE MARKETS , 1983 .

[56]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[57]  A. Feuerverger,et al.  On the Efficiency of Empirical Characteristic Function Procedures , 1981 .

[58]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[59]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[60]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[61]  E. Parzen STATISTICAL INFERENCE ON TIME SERIES BY RKHS METHODS. , 1970 .

[62]  G. Reuter LINEAR OPERATORS PART II (SPECTRAL THEORY) , 1969 .

[63]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[64]  R. Rao Relations between Weak and Uniform Convergence of Measures with Applications , 1962 .

[65]  E. Parzen On Consistent Estimates of the Spectrum of a Stationary Time Series , 1957 .