Remote state preparation: arbitrary remote control of photon polarizations for quantum communication

By using a partial polarizer to apply a generalized polarization measurement to one photon of a polarization entangled pair, we remotely prepare single photons in arbitrary polarization qubits. Specifically, we are able to produce a range of states of any desired degree of mixedness or purity, over (and within) the entire Poincare sphere, with a typical fidelity exceeding 99.5%. Moreover, by using non-degenerate entangled pairs as a resource, we can prepare states in multiple wavelengths. Finally, we discuss the states remotely preparable given a particular two-qubit resource state.

[1]  G. Guo,et al.  Remote preparation of mixed states via noisy entanglement (6 pages) , 2005, quant-ph/0503088.

[2]  Christopher Edward Kuklewicz,et al.  Ultrabright source of polarization-entangled photons from cavity-enhanced downconversion , 2005 .

[3]  David Branning,et al.  Maximally entangled mixed states: creation and concentration. , 2004, Physical review letters.

[4]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[5]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[6]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[7]  Hong,et al.  Experimental realization of a localized one-photon state. , 1986, Physical review letters.

[8]  K.J.Resch,et al.  Experimental One-Way Quantum Computing , 2005, quant-ph/0503126.

[9]  K. Gao,et al.  Experimental implementation of remote state preparation by nuclear magnetic resonance , 2002, quant-ph/0202004.

[10]  A. Pati Minimum classical bit for remote preparation and measurement of a qubit , 1999, quant-ph/9907022.

[11]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[12]  M. Goggin,et al.  Remote state preparation: arbitrary remote control of photon polarization. , 2005, Physical review letters.

[13]  David Branning,et al.  Measurement of geometric phase for mixed states using single photon interferometry. , 2005, Physical review letters.

[14]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[15]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[16]  S. A. Babichev,et al.  Remote preparation of a single-mode photonic qubit by measuring field quadrature noise. , 2003, Physical review letters.

[17]  Nicholas Peters,et al.  Precise creation, characterization, and manipulation of single optical qubits , 2003, Quantum Inf. Comput..

[18]  R. Werner,et al.  Optimal manipulations with qubits: Universal-NOT gate , 1999, quant-ph/9901053.

[19]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[20]  H. Lo Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity , 1999, quant-ph/9912009.

[21]  E. Jeffrey,et al.  Towards a periodic deterministic source of arbitrary single-photon states , 2004 .

[22]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .