Cyclodextrin and adamantane host-guest interactions of modified hyperbranched poly(ethylene imine) as mimetics for biological membranes.

[1]  A. Bangham,et al.  Diffusion of univalent ions across the lamellae of swollen phospholipids. , 1965, Journal of molecular biology.

[2]  R. Zhuo,et al.  PEI grafted hyperbranched polymers with polyglycerol as a core for gene delivery. , 2010, Colloids and surfaces. B, Biointerfaces.

[3]  M. Klein,et al.  Self-Assembly of Janus Dendrimers into Uniform Dendrimersomes and Other Complex Architectures , 2010, Science.

[4]  C Russell Middaugh,et al.  Barriers to nonviral gene delivery. , 2003, Journal of pharmaceutical sciences.

[5]  Abdallah,et al.  Gene transfer with lipospermines and polyethylenimines. , 1998, Advanced drug delivery reviews.

[6]  H. Paik,et al.  Ionization of Poly(ethylenimine) and Poly(allylamine) at Various pH′s , 1994 .

[7]  J. H. Esch,et al.  Self-assembly approaches for the construction of cell architecture mimics , 2009 .

[8]  Kui Yu,et al.  Ion-Induced Morphological Changes in “Crew-Cut” Aggregates of Amphiphilic Block Copolymers , 1996, Science.

[9]  U. Kolb,et al.  Nanoparticle vesicles through self assembly of cyclodextrin- and adamantyl-modified silica. , 2010, Macromolecular rapid communications.

[10]  Heiner Friedrich,et al.  Imaging of self-assembled structures: interpretation of TEM and cryo-TEM images. , 2010, Angewandte Chemie.

[11]  M. Ghadiri,et al.  Artificial transmembrane ion channels from self-assembling peptide nanotubes , 1994, Nature.

[12]  W. Kunz,et al.  Catanionic micelles as a model to mimic biological membranes in the presence of anesthetic alcohols. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[13]  D. Hammer,et al.  Cross-linked polymersome membranes: Vesicles with broadly adjustable properties , 2002 .

[14]  S. Pun,et al.  Delivery of non-viral gene carriers from sphere-templated fibrin scaffolds for sustained transgene expression. , 2007, Biomaterials.

[15]  C. Feldmann,et al.  Nanoscale γ-AlO(OH) Hollow Spheres: Synthesis and Container-Type Functionality , 2007 .

[16]  Sonke Svenson,et al.  Dendrimers as versatile platform in drug delivery applications. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[17]  Christopher B. Murray,et al.  Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface , 2010, Nature.

[18]  Christopher Barner-Kowollik,et al.  Klickreaktionen von Polymeren oder einfach nur effizientes Verknüpfen: Wo liegt der Unterschied?† , 2011 .

[19]  W. Knoll,et al.  The protein-tethered lipid bilayer: a novel mimic of the biological membrane. , 2004, Biophysical journal.

[20]  C. Hawker,et al.  "Clicking" polymers or just efficient linking: what is the difference? , 2011, Angewandte Chemie.

[21]  Katsuhiko Ariga,et al.  Layered paving of vesicular nanoparticles formed with cerasome as a bioinspired organic-inorganic hybrid. , 2002, Journal of the American Chemical Society.

[22]  Ghaleb A Husseini,et al.  Micelles and nanoparticles for ultrasonic drug and gene delivery. , 2008, Advanced drug delivery reviews.

[23]  W. Meier,et al.  Self-assembly of reactive amphiphilic block copolymers as mimetics for biological membranes. , 2004, Current opinion in chemical biology.

[24]  U. Kolb,et al.  Fluorescent nanowires self-assembled through host-guest interactions in modified calcein. , 2011, Angewandte Chemie.

[25]  Helmut Ritter,et al.  Stimuli Responsive Size Control of Hyperbranched Polymers , 2011 .

[26]  A. Barrero,et al.  A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets. , 2003, Journal of the American Chemical Society.

[27]  Heiner Friedrich,et al.  Abbildung selbstorganisierter Strukturen: Interpretation von TEM‐ und Kryo‐TEM‐Aufnahmen , 2010 .