Brain matters: unveiling the distinct contributions of region, age, and sex to glia diversity and CNS function

[1]  Atique U. Ahmed,et al.  Cell Lineage and Pseudotime Inference for Single-cell Transcriptomics Analysis of Chemoresistance in GBM (P11-13.002) , 2023, Wednesday, April 26.

[2]  J. Saez-Rodriguez,et al.  Cross-regional homeostatic and reactive glial signatures in multiple sclerosis , 2022, Acta Neuropathologica.

[3]  J. Zuchero,et al.  CNS myelination requires VAMP2/3-mediated membrane expansion in oligodendrocytes , 2022, bioRxiv.

[4]  O. Gokce,et al.  Spatial Transcriptomics-correlated Electron Microscopy , 2022, bioRxiv.

[5]  J. Wardlaw,et al.  Loss of the heterogeneous expression of flippase ATP11B leads to cerebral small vessel disease in a normotensive rat model , 2022, Acta Neuropathologica.

[6]  K. Nave,et al.  Conservation and divergence of myelin proteome and oligodendrocyte transcriptome profiles between humans and mice , 2022, bioRxiv.

[7]  J. Bourne,et al.  Cholesterol biosynthesis defines oligodendrocyte precursor heterogeneity between brain and spinal cord , 2021, Cell reports.

[8]  M. S. van der Knaap,et al.  Heterogeneity of white matter astrocytes in the human brain , 2021, Acta Neuropathologica.

[9]  S. Teichmann,et al.  Differential abundance testing on single-cell data using k-nearest neighbor graphs , 2021, Nature Biotechnology.

[10]  C. ffrench-Constant,et al.  Oligodendrocyte HCN2 Channels Regulate Myelin Sheath Length , 2021, The Journal of Neuroscience.

[11]  P. Matthews,et al.  Diverse human astrocyte and microglial transcriptional responses to Alzheimer’s pathology , 2021, bioRxiv.

[12]  T. Kuhlmann,et al.  SKAP2 as a new regulator of oligodendroglial migration and myelin sheath formation , 2021, bioRxiv.

[13]  Bin Zhang,et al.  Single-cell atlas of progressive supranuclear palsy reveals a distinct hybrid glial cell population , 2021, bioRxiv.

[14]  Owen J. L. Rackham,et al.  ShinyCell: simple and sharable visualization of single-cell gene expression data , 2021, Bioinform..

[15]  L. Garcia-Segura,et al.  Role of glial cells in the generation of sex differences in neurodegenerative diseases and brain aging , 2021, Mechanisms of Ageing and Development.

[16]  Yunjiao Wang,et al.  DUSP1 Promotes Microglial Polarization toward M2 Phenotype in the Medial Prefrontal Cortex of Neuropathic Pain Rats via Inhibition of MAPK Pathway. , 2021, ACS chemical neuroscience.

[17]  F. Tang,et al.  Heterogeneity of glial progenitor cells during the neurogenesis-to-gliogenesis switch in the developing human cerebral cortex. , 2021, Cell reports.

[18]  Hongyu Guo,et al.  scSorter: assigning cells to known cell types according to marker genes , 2021, Genome biology.

[19]  J. Mulder,et al.  Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s disease , 2021, Acta Neuropathologica.

[20]  Kira E. Poskanzer,et al.  Reactive astrocyte nomenclature, definitions, and future directions , 2021, Nature Neuroscience.

[21]  M. Simons,et al.  White matter aging drives microglial diversity , 2021, Neuron.

[22]  Anna C. Williams,et al.  Oligodendroglial Heterogeneity in Neuropsychiatric Disease , 2021, Life.

[23]  B. Becher,et al.  Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes , 2021, Nature.

[24]  A. Kriegstein,et al.  Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia , 2020, Nature Neuroscience.

[25]  Markus M. Hilscher,et al.  Distinct oligodendrocyte populations have spatial preference and different responses to spinal cord injury , 2020, Nature Communications.

[26]  P. Matthews,et al.  Single-Nucleus RNA-Seq Is Not Suitable for Detection of Microglial Activation Genes in Humans , 2020, Cell reports.

[27]  A. Kriegstein,et al.  Origins and Proliferative States of Human Oligodendrocyte Precursor Cells , 2020, Cell.

[28]  R. Takahashi,et al.  Sex-specific differences in transcriptomic profiles and cellular characteristics of oligodendrocyte precursor cells. , 2020, Stem cell research.

[29]  J. Ragoussis,et al.  Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons , 2020, Nature Neuroscience.

[30]  J. González,et al.  Extreme downregulation of chromosome Y and Alzheimer's disease in men , 2020, Neurobiology of Aging.

[31]  Maxim N. Artyomov,et al.  Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and - independent cellular responses in Alzheimer’s disease , 2019, Nature Medicine.

[32]  R. Franklin,et al.  Remyelination and ageing: Reversing the ravages of time , 2019, Multiple sclerosis.

[33]  Fabian J Theis,et al.  Generalizing RNA velocity to transient cell states through dynamical modeling , 2019, Nature Biotechnology.

[34]  S. Dietmann,et al.  Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells , 2019, Cell stem cell.

[35]  L. Gan,et al.  Do Microglial Sex Differences Contribute to Sex Differences in Neurodegenerative Diseases? , 2019, Trends in molecular medicine.

[36]  D. Rowitch,et al.  Niche stiffness underlies the aging of central nervous system progenitor cells , 2019, Nature.

[37]  Richard Reynolds,et al.  Neuronal vulnerability and multilineage diversity in multiple sclerosis , 2019, Nature.

[38]  Manolis Kellis,et al.  Single-cell transcriptomic analysis of Alzheimer’s disease , 2019, Nature.

[39]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods , 2019, Nature Biotechnology.

[40]  S. Dietmann,et al.  Oligodendrocyte Progenitor Cells Become Regionally Diverse and Heterogeneous with Age , 2019, Neuron.

[41]  D. Malhotra,et al.  Altered human oligodendrocyte heterogeneity in multiple sclerosis , 2019, Nature.

[42]  S. Bernard,et al.  Dynamics of oligodendrocyte generation in multiple sclerosis , 2019, Nature.

[43]  J. Satoh,et al.  Microglia express GPNMB in the brains of Alzheimer's disease and Nasu-Hakola disease. , 2019, Intractable & rare diseases research.

[44]  Sueli Marques,et al.  Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis , 2018, Nature Medicine.

[45]  Xuanmao Chen,et al.  Neuronal and astrocytic primary cilia in the mature brain , 2018, Pharmacological research.

[46]  Åsa K. Björklund,et al.  Transcriptional Convergence of Oligodendrocyte Lineage Progenitors during Development , 2018, Developmental cell.

[47]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[48]  Lars E. Borm,et al.  Molecular Architecture of the Mouse Nervous System , 2018, Cell.

[49]  A. Goate,et al.  Evaluation of Gene-Based Family-Based Methods to Detect Novel Genes Associated With Familial Late Onset Alzheimer Disease , 2018, bioRxiv.

[50]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[51]  Jie Qiao,et al.  A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex , 2018, Nature.

[52]  J. Grutzendler,et al.  Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain , 2018, Nature Neuroscience.

[53]  Li Li,et al.  Massively Parallel Single Nucleus Transcriptional Profiling Defines Spinal Cord Neurons and Their Activity during Behavior , 2018, Cell reports.

[54]  Ben A. Barres,et al.  Normal aging induces A1-like astrocyte reactivity , 2018, Proceedings of the National Academy of Sciences.

[55]  J. Morris,et al.  Evaluation of Gene-Based Family-Based Methods to Detect Novel Genes Associated With Familial Late Onset Alzheimer Disease , 2018, bioRxiv.

[56]  Emilia Favuzzi,et al.  Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican , 2017, Neuron.

[57]  I. Scarisbrick,et al.  Astrocyte heterogeneity across the brain and spinal cord occurs developmentally, in adulthood and in response to demyelination , 2017, PloS one.

[58]  Russell B. Fletcher,et al.  Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics , 2017, bioRxiv.

[59]  Nadine C. Heyworth,et al.  Microglia activation and phagocytosis: relationship with aging and cognitive impairment in the rhesus monkey , 2017, GeroScience.

[60]  Manoj Kumar,et al.  INGE GRUNDKE-IQBAL AWARD FOR ALZHEIMER’S RESEARCH: NEUROTOXIC REACTIVE ASTROCYTES ARE INDUCED BY ACTIVATED MICROGLIA , 2019, Alzheimer's & Dementia.

[61]  Peter Bankhead,et al.  QuPath: Open source software for digital pathology image analysis , 2017, Scientific Reports.

[62]  J. Ule,et al.  Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging , 2017, Cell reports.

[63]  F. Benfenati,et al.  The Transcription Factors EBF1 and EBF2 Are Positive Regulators of Myelination in Schwann Cells , 2017, Molecular Neurobiology.

[64]  Paul J. Lucassen,et al.  The Indispensable Roles of Microglia and Astrocytes during Brain Development , 2016, Front. Hum. Neurosci..

[65]  Davis J. McCarthy,et al.  A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor , 2016, F1000Research.

[66]  Aaron T. L. Lun,et al.  Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R , 2017, Bioinform..

[67]  Jens Hjerling-Leffler,et al.  Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system , 2016, Science.

[68]  W. Richardson,et al.  Developmental Origin of Oligodendrocyte Lineage Cells Determines Response to Demyelination and Susceptibility to Age-Associated Functional Decline , 2016, Cell reports.

[69]  J. Bilezikian,et al.  Primary Hyperparathyroidism , 2016, F1000Research.

[70]  C. ffrench-Constant,et al.  CNS Myelin Sheath Lengths Are an Intrinsic Property of Oligodendrocytes , 2015, Current Biology.

[71]  Carlos Matute,et al.  Pío del Río Hortega and the discovery of the oligodendrocytes , 2015, Front. Neuroanat..

[72]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[73]  S. Quake,et al.  A survey of human brain transcriptome diversity at the single cell level , 2015, Proceedings of the National Academy of Sciences.

[74]  Peter J. Mohler,et al.  GLIAL ANKYRINS FACILITATE PARANODAL AXOGLIAL JUNCTION ASSEMBLY , 2014, Nature Neuroscience.

[75]  J. Antel,et al.  Heterogeneity of oligodendrocyte progenitor cells in adult human brain , 2014, Annals of clinical and translational neurology.

[76]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[77]  Cole Trapnell,et al.  Pseudo-temporal ordering of individual cells reveals dynamics and regulators of cell fate decisions , 2014, Nature Biotechnology.

[78]  J. Lechner-Scott,et al.  Sex as a determinant of relapse incidence and progressive course of multiple sclerosis. , 2013, Brain : a journal of neurology.

[79]  M. Götz,et al.  Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain , 2013, Nature Neuroscience.

[80]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[81]  M Daumer,et al.  Age and disability accumulation in multiple sclerosis , 2011, Neurology.

[82]  S. Whittemore,et al.  Dorsally‐derived oligodendrocytes in the spinal cord contribute to axonal myelination during development and remyelination following focal demyelination , 2011, Glia.

[83]  P. Sørensen,et al.  Demyelination versus remyelination in progressive multiple sclerosis. , 2010, Brain : a journal of neurology.

[84]  E. Birney,et al.  Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt , 2009, Nature Protocols.

[85]  N. Zečević,et al.  Oligodendrocyte Development and the Onset of Myelination in the Human Fetal Brain , 2009, Front. Neuroanat..

[86]  Tsutomu Hashikawa,et al.  Opalin, a Transmembrane Sialylglycoprotein Located in the Central Nervous System Myelin Paranodal Loop Membrane* , 2008, Journal of Biological Chemistry.

[87]  H. Kettenmann,et al.  Microglia: active sensor and versatile effector cells in the normal and pathologic brain , 2007, Nature Neuroscience.

[88]  Rafael Arroyo,et al.  Early B-cell Factor gene association with multiple sclerosis in the Spanish population , 2005, BMC neurology.

[89]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[90]  Chao Zhao,et al.  The Age-Related Decrease in CNS Remyelination Efficiency Is Attributable to an Impairment of Both Oligodendrocyte Progenitor Recruitment and Differentiation , 2002, The Journal of Neuroscience.

[91]  R. Krumlauf,et al.  Regulatory analysis of the mouse Hoxb3 gene: multiple elements work in concert to direct temporal and spatial patterns of expression. , 2001, Developmental biology.

[92]  B. Ye,et al.  unc-3, a gene required for axonal guidance in Caenorhabditis elegans, encodes a member of the O/E family of transcription factors. , 1998, Development.

[93]  S. Xuan,et al.  Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres , 1995, Neuron.