Robust stabilization with positive real uncertainty: beyond the small gain theorem

The properties of positive real transfer functions are used to guarantee robust stability in the presence of positive real (but otherwise unknown) plant uncertainty. These results are then used for controller synthesis to address the problem of robust stabilization in the presence of positive real uncertainty. One of the principal motivations for these results is to utilize phase information in guaranteeing robust stability. In this sense these results go beyond the usual limitations of the small gain theorem and quadratic Lyapunov functions, which may be conservative when phase information is available. The results of this study are based upon a Riccati equation formulation of the positive real lemma and thus resemble certain Riccati-based approaches to bounded real (H/sub infinity /) control.<<ETX>>

[1]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[2]  B. Anderson A SYSTEM THEORY CRITERION FOR POSITIVE REAL MATRICES , 1967 .

[3]  B. D. Anderson,et al.  Dual form of a positive real lemma , 1967 .

[4]  B. Anderson A simplified viewpoint of hyperstability , 1968 .

[5]  Brian D. O. Anderson,et al.  Algebraic Structure of Generalized Positive Real Matrices , 1968 .

[6]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[7]  D. Siljak New algebraic criteria for positive realness , 1971 .

[8]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[9]  Brian D. O. Anderson,et al.  The small-gain theorem, the passivity theorem and their equivalence , 1972 .

[10]  J. Willems Dissipative dynamical systems Part II: Linear systems with quadratic supply rates , 1972 .

[11]  K. Narendra,et al.  Frequency Domain Criteria for Absolute Stability , 1973 .

[12]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[13]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[14]  B. Dickinson Analysis of the Lyapunov equation using generalized positive real matrices , 1979 .

[15]  M. Balas Direct Velocity Feedback Control of Large Space Structures , 1979 .

[16]  B. Dickinson Analysis of the Lyapunov equation using generalized positive real matrices , 1979, 1979 18th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[17]  P. Moylan,et al.  Dissipative Dynamical Systems: Basic Input-Output and State Properties , 1980 .

[18]  R. P. Iwens,et al.  Stability of Large Space Structure Control Systems Using Positivity Concepts , 1981 .

[19]  J. Edmunds,et al.  Principal gains and principal phases in the analysis of linear multivariable feedback systems , 1981 .

[20]  David C. Hyland,et al.  Minimum Information Stochastic Modelling of Linear Systems with a Class of Parameter Uncertainies , 1982, 1982 American Control Conference.

[21]  E. Noldus Design of robust state feedback laws , 1982 .

[22]  D. Hyland Maximum Entropy Stochastic Approach to Control Design for Uncertain Structural Systems , 1982, 1982 American Control Conference.

[23]  Y. D. Landau,et al.  Adaptive control: The model reference approach , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[24]  Dennis Bernstein,et al.  The optimal projection/maximum entropy approach to designing low-order, robust controllers for flexible structures , 1985, 1985 24th IEEE Conference on Decision and Control.

[25]  H. Wimmer,et al.  Monotonicity of maximal solutions of algebraic Riccati equations , 1985 .

[26]  D. Bernstein,et al.  Robust controller synthesis using the maximum entropy design equations , 1986 .

[27]  S. M. Joshi,et al.  Robustness properties of collocated controllers for flexible spacecraft , 1986 .

[28]  I. Petersen Disturbance attenuation and H^{∞} optimization: A design method based on the algebraic Riccati equation , 1987 .

[29]  M. Safonov,et al.  Synthesis of positive real multivariable feedback systems , 1987 .

[31]  Mark Mclaren,et al.  Robust multivariable control of large space structures using positivity , 1987 .

[32]  Stephen Yurkovich,et al.  On the Robustness of MEOP Design versus Asymptotic LQG Synthesis , 1988, 1988 American Control Conference.

[33]  Dennis S. Bernstein,et al.  Optimal Projection for Uncertain Systems (OPUS): A Unified Theory of Reduced-Order, Robust Control Design , 1988 .

[34]  J. Wen Time domain and frequency domain conditions for strict positive realness , 1988 .

[35]  W. Haddad,et al.  LQG control with an H∞ performance bound: a riccati equation approach , 1988, 1988 American Control Conference.

[36]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[37]  R. Lozano-Leal,et al.  On the design of the dissipative LQG-type controllers , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[38]  P. Ioannou,et al.  Strictly positive real matrices and the Lefschetz-Kalman-Yakubovich lemma , 1988 .

[39]  Stephen Yurkovich,et al.  On the robustness of MEOP design versus asymptotic LQG synthesis , 1988 .

[40]  P. Khargonekar,et al.  An algebraic Riccati equation approach to H ∞ optimization , 1988 .

[41]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[42]  D. Bernstein,et al.  LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .

[43]  Stephen P. Boyd,et al.  Structured and Simultaneous Lyapunov Functions for System Stability Problems , 1989 .

[44]  André L. Tits,et al.  Robustness under uncertainty with phase information , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[45]  Suresh M. Joshi,et al.  Control of Large Flexible Space Structures , 1989 .

[46]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[47]  J. Junkins Optimal Projection Approach To Robust Fixed-Structure Control Design , 1990 .

[48]  D. Bernstein,et al.  Robust stability and performance analysis for state-space systems via quadratic Lyapunov bounds , 1990 .

[49]  D. Bernstein,et al.  Generalized Riccati equations for the full- and reduced-order mixed-norm H 2 / H ∞ , 1990 .

[50]  Dennis S. Bernstein,et al.  Real parameter uncertainty and phase information in the robust control of flexible structures , 1990, 29th IEEE Conference on Decision and Control.

[51]  Steven R. Hall,et al.  An H∞ power flow approach to control of uncertain structures , 1990, 1990 American Control Conference.

[52]  S. Joshi,et al.  Strictly positive real transfer functions revisited , 1990 .

[53]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[54]  Edmond A. Jonckheere,et al.  Phase margins for multivariable control systems , 1990 .

[55]  Wassim Generalized Riccati equations for the full-and reduced-order mixed-norm Hz / H standard problem * , 2022 .