Dual-Membrane Module and Its Optimal Flow Pattern for H2/CO2 Separation

A dual-membrane module is able to provide higher separation performance for H2/CO2 gas mixtures compared to conventional single-membrane modules. In this work, the flow patterns of dual-membrane modules are studied, and the results indicate that the co(H2):counter(CO2) flow pattern is the optimal flow pattern for H2 recovery. The co(H2):counter(CO2) flow pattern employs cocurrent (permeate flow parallel to bulk flow) to the H2-selective membrane and counter-current (permeate flow reverse to bulk flow) to the CO2-selective membrane; the flow pattern reduces the permeation flux of CO2 in the H2-selective membrane, resulting in a higher H2 separation factor. The evaluations show that the H2 product purity could be raised by 35% (from 62 mol % to 84 mol %) compared to conventional membrane modules. The results indicate that enhancing the membrane separation performance through flow pattern is a practical and effective method for process engineering.

[1]  Seda Keskin,et al.  Identifying Highly Selective Metal Organic Frameworks for CH4/H2 Separations Using Computational Tools , 2015 .

[2]  C. Scholes,et al.  Effect of Fabrication and Operation Conditions on CO2 Separation Performance of PEO-PA Block Copolymer Membranes , 2015 .

[3]  V. S. Khotimsky,et al.  Robust high-permeance PTMSP composite membranes for CO2 membrane gas desorption at elevated temperatures and pressures , 2014 .

[4]  D. Luebke,et al.  Mechanically robust hollow fiber supported ionic liquid membranes for CO2 separation applications , 2014 .

[5]  A. Ghadimi,et al.  Improvement in CO2/H2 separation by fabrication of poly(ether-b-amide6)/glycerol triacetate gel membranes , 2014 .

[6]  Hamidreza Sanaeepur,et al.  Facilitated transport of CO2 through Co(II)-S-EPDM ionomer membrane , 2014 .

[7]  J. Caro,et al.  Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity. , 2014, Journal of the American Chemical Society.

[8]  Richard W. Baker,et al.  Gas Separation Membrane Materials: A Perspective , 2014 .

[9]  Analysis of feed stream acid gas concentration effects on the transport properties and separation performance of polymeric membranes for natural gas sweetening: A comparison between a glassy and rubbery polymer , 2014 .

[10]  J. R. Johnson,et al.  Interfacial microfluidic processing of metal-organic framework hollow fiber membranes , 2014, Science.

[11]  S. Hong,et al.  Preparation and performance evaluation of composite hollow fiber membrane for SO2 separation , 2014 .

[12]  G. Heath,et al.  Life Cycle Greenhouse Gas Emissions of Electricity Generated from Conventionally Produced Natural Gas , 2014 .

[13]  Prodip K. Kundu,et al.  Analysis of permeate pressure build-up effects on separation performance of asymmetric hollow fiber membranes , 2013 .

[14]  Ali Abbas,et al.  Analysis of hollow fibre membrane systems for multicomponent gas separation , 2013 .

[15]  Matthias Wessling,et al.  Modeling Gas Permeation by Linking Nonideal Effects , 2013 .

[16]  Matthias Wessling,et al.  Optimizing Argon Recovery: Membrane Separation of Carbon Monoxide at High Concentrations via the Water Gas Shift , 2012 .

[17]  Colin A. Scholes,et al.  Membrane gas separation applications in natural gas processing , 2012 .

[18]  Ali Abbas,et al.  Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas , 2012 .

[19]  T. Merkel,et al.  Carbon dioxide capture with membranes at an IGCC power plant , 2012 .

[20]  Tai‐Shung Chung,et al.  Multi-layer composite hollow fiber membranes derived from poly(ethylene glycol) (PEG) containing hyb , 2011 .

[21]  Tai‐Shung Chung,et al.  Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future , 2009 .

[22]  Jhuma Sadhukhan,et al.  Process intensification aspects for steam methane reforming: An overview , 2009 .

[23]  Tai‐Shung Chung,et al.  Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks , 2008 .

[24]  Ye Liu,et al.  Simultaneous Occurrence of Chemical Grafting, Cross-Linking, and Etching on the Surface of Polyimide Membranes and Their Impact on H2/CO2 Separation , 2008 .

[25]  Klaus-Viktor Peinemann,et al.  Developments in Membrane Research: from Material via Process Design to Industrial Application , 2006 .

[26]  Benny D. Freeman,et al.  Gas solubility, diffusivity and permeability in poly(ethylene oxide) , 2004 .

[27]  V. Bondar,et al.  Gas transport properties of poly(ether-b-amide) segmented block copolymers , 2000 .

[28]  G. K. Fleming,et al.  Nonisothermal model for gas separation hollow-fiber membranes , 1999 .

[29]  Benny D. Freeman,et al.  Modeling multicomponent gas separation using hollow‐fiber membrane contactors , 1998 .

[30]  William J. Koros,et al.  Mathematical modeling of gas separation permeators — for radial crossflow, countercurrent, and cocurrent hollow fiber membrane modules , 1997 .

[31]  Y. Kao,et al.  Comparative study of two-membrane permeators for gas separations , 1989 .

[32]  K. Sirkar,et al.  Ternary gas separation using two different membranes , 1988 .

[33]  Kamalesh K. Sirkar,et al.  Ternary gas mixture separation in two‐membrane permeators , 1987 .

[34]  S. A. Stern,et al.  Separation of a helium‐methane mixture in permeators with two types of polymer membranes , 1986 .

[35]  S. A. Stern,et al.  Modeling of permeators with two different types of polymer membranes , 1985 .

[36]  K. Sirkar,et al.  Multicomponent gas separation by an asymmetric permeator containing two different membranes , 1984 .

[37]  Hajime Sato,et al.  Radioactive Rare Gas Separation Using a Separation Cell with Two Kinds of Membrane Differing in Gas Permeability Tendency , 1977 .

[38]  C. Pan,et al.  An Analysis of the Single-Stage Gaseous Permeation Process , 1974 .