Simultaneous design and MPC-based control for dynamic systems under uncertainty: A stochastic approach

Abstract A stochastic-based simultaneous design and control methodology for chemical processes under uncertainty is presented. An optimization framework is proposed with the aim of achieving a feasible and stable optimal process design in the presence of stochastic disturbances while using advanced model-based control schemes such as Model Predictive Control (MPC). The key idea is to determine the dynamic variability of the system that will be accounted for in the process design using a stochastic-based worst-case variability index. This index is computed from the probability distribution of the worst-case variability of the process variables that determine the dynamic feasibility or the dynamic performance of the system under random realizations in the disturbances. A case study of an actual wastewater treatment industrial plant is presented and used to test the proposed methodology and compare its performance against the sequential design approach and a simultaneous design and control method using conventional PI-based control schemes.

[1]  Pu Li,et al.  Chance constrained programming approach to process optimization under uncertainty , 2008, Comput. Chem. Eng..

[2]  Luis A. Ricardez-Sandoval,et al.  Integration of design and control for chemical processes: A review of the literature and some recent results , 2009, Annu. Rev. Control..

[3]  Michael C. Georgiadis,et al.  The integration of process design and control , 2004 .

[4]  Costas Kravaris,et al.  Plant-wide control structure selection methodology based on economics , 2013, Comput. Chem. Eng..

[5]  G. Marsaglia,et al.  The Ziggurat Method for Generating Random Variables , 2000 .

[6]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[7]  Luis A. Ricardez-Sandoval,et al.  A methodology for the simultaneous design and control of large-scale systems under process parameter uncertainty , 2011, Comput. Chem. Eng..

[8]  Luis A. Ricardez-Sandoval,et al.  Simultaneous process synthesis and control design under uncertainty: A worst-case performance approach , 2013 .

[9]  Efstratios N. Pistikopoulos,et al.  The interactions of design control and operability in reactive distillation systems , 2002 .

[10]  Rafiqul Gani,et al.  State‐of‐the‐art and progress in the optimization‐based simultaneous design and control for chemical processes , 2012 .

[11]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[12]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[13]  Alan Edelman,et al.  Parallel MATLAB: Doing it Right , 2005, Proceedings of the IEEE.

[14]  Luis A. Ricardez-Sandoval,et al.  Application of Robust Control Tools to the Simultaneous Design and Control of Dynamic Systems , 2009 .

[15]  Luis A. Ricardez-Sandoval,et al.  Optimal design and control of dynamic systems under uncertainty: A probabilistic approach , 2012, Comput. Chem. Eng..

[16]  Gürkan Sin,et al.  Integration of process design and controller design for chemical processes using model-based methodology , 2010, Comput. Chem. Eng..

[17]  Warren D. Seider,et al.  Product and Process Design Principles: Synthesis, Analysis, and Evaluation , 1998 .

[18]  Efstratios N. Pistikopoulos,et al.  Simultaneous design and control optimisation under uncertainty , 2000 .

[19]  J. A. Bandoni,et al.  Integrated flexibility and controllability analysis in design of chemical processes , 1997 .

[20]  Jay H. Lee,et al.  Model predictive control: Review of the three decades of development , 2011 .

[21]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[22]  John D. Perkins,et al.  Structural design for on‐line process optimization: I. Dynamic economics of MPC , 1999 .

[23]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[24]  Efstratios N. Pistikopoulos,et al.  The interactions of design, control and operability in reactive distillation systems , 2001 .

[25]  Mahdi Sharifzadeh,et al.  Integration of process design and control: A review , 2013 .

[26]  J. D. Perkins,et al.  A case study in simultaneous design and control using rigorous, mixed-integer dynamic optimization models , 2002 .

[27]  Peter L. Douglas,et al.  Integration of design and control : A robust control approach using MPC , 2008 .

[28]  Christodoulos A. Floudas,et al.  Analyzing the interaction of design and control—1. A multiobjective framework and application to binary distillation synthesis , 1994 .

[29]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[30]  Luis A. Ricardez-Sandoval,et al.  Simultaneous Design and Control: A New Approach and Comparisons with Existing Methodologies , 2010 .

[31]  Efstratios N. Pistikopoulos,et al.  Recent advances in optimization-based simultaneous process and control design , 2004, Comput. Chem. Eng..

[32]  Hernan Alvarez,et al.  Robust Integrated Design of processes with terminal penalty model predictive controllers , 2011 .

[33]  N. N. Ziyatdinov,et al.  Optimization of chemical processes with dependent uncertain parameters , 2012 .

[34]  Haitao Huang,et al.  Comparison of PI and MPC for control of a gas recovery unit , 2002 .

[35]  Douglas C. Montgomery,et al.  Applied Statistics and Probability for Engineers, Third edition , 1994 .

[36]  Antonio Flores-Tlacuahuac,et al.  Integrated design and control using a simultaneous mixed-integer dynamic optimization approach , 2009 .

[37]  David D. Brengel,et al.  Coordinated design and control optimization of nonlinear processes , 1992 .

[38]  Peter L. Douglas,et al.  Simultaneous design and control of processes under uncertainty: A robust modelling approach , 2008 .

[39]  Geoffrey W. Barton,et al.  A condition number scaling policy for stability robustness analysis , 1988 .

[40]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[41]  César de Prada,et al.  Integration of Design and Control using an MPC-based superstructure for control structure selection. , 2011 .

[42]  Ioannis K. Kookos,et al.  Control Structure Selection of an Ideal Reactive Distillation Column , 2011 .

[43]  Luis A. Ricardez-Sandoval,et al.  Simultaneous Design and Control under Uncertainty Using Model Predictive Control , 2013 .

[44]  Efstratios N. Pistikopoulos,et al.  Optimal design of dynamic systems under uncertainty , 1996 .

[45]  Marta S. Basualdo,et al.  Improvements on multiloop control design via net load evaluation , 2013, Comput. Chem. Eng..

[46]  Ioannis K. Kookos,et al.  An Algorithm for Simultaneous Process Design and Control , 2001 .

[47]  Manfred Morari,et al.  Design of resilient processing plants—I Process design under consideration of dynamic aspects , 1982 .

[48]  Klaus D. Timmerhaus,et al.  Plant design and economics for chemical engineers , 1958 .

[49]  Gavin Towler,et al.  Chemical engineering design : principles, practice, and economics of plant and process design , 2008 .

[50]  Nina F. Thornhill,et al.  Integrated design and control using a dynamic inversely controlled process model , 2013, Comput. Chem. Eng..

[51]  Ioannis K. Kookos Optimal Operation of Batch Processes under Uncertainty: A Monte Carlo Simulation-Deterministic Optimization Approach , 2003 .

[52]  Luis A. Ricardez-Sandoval,et al.  Optimal process and control design under uncertainty: A methodology with robust feasibility and stability analyses , 2013 .

[53]  Babatunde A. Ogunnaike,et al.  Integrating systems design and control using dynamic flexibility analysis , 2007 .

[54]  Nina F. Thornhill,et al.  Optimal selection of control structure using a steady-state inversely controlled process model , 2012, Comput. Chem. Eng..

[55]  Antonio Flores-Tlacuahuac,et al.  Simultaneous mixed-integer dynamic optimization for integrated design and control , 2007, Comput. Chem. Eng..

[56]  Martin Mönnigmann,et al.  Constructive nonlinear dynamics - : Foundations and application to robust nonlinear control , 2005 .

[57]  Jose A. Romagnoli,et al.  Chapter B4 – Process design and operation: Incorporating environmental, profitability, heat integration and controllability considerations , 2004 .

[58]  Stefan Dietrich,et al.  Scalar and Parallel Optimized Implementation of the Direct Simulation Monte Carlo Method , 1996 .

[59]  Luis A. Ricardez-Sandoval,et al.  Simultaneous design and control of chemical processes with application to the Tennessee Eastman process , 2009 .