Improving Automatic Design Space Exploration by Integrating Symbolic Techniques into Multi-Objective Evolutionary Algorithms

Solving Multi-objective Combinatorial Optimization Problems (MCOPs) is often a twofold problem: Firstly, the feasible region has to be identified in order to, secondly, im- prove the set of non-dominated solutions. In particular, prob- lems where the construction of a single feasible solution is NP - complete are most challenging. In the present paper, we will pro- pose a combination of Multi-Objective Evolutionary Algorithms (MOEAs) with Symbolic Techniques (STs) to solve this problem. Different Symbolic Techniques, such as Binary Decision Dia- grams (BDDs), Multi-valued Decision Diagrams (MDDs), and SAT solvers as known from digital hardware verification will be considered in our methodology. Experimental results from the area of automatic design space exploration of embedded sys- tems illustrate the benefits of our proposed approach. As a key result, the integration of STs in MOEAs is particularly useful in the presence of large search spaces containing only few feasible solutions.

[1]  Shuvra S. Bhattacharyya,et al.  CHARMED: a multi-objective co-synthesis framework for multi-mode embedded systems , 2004, Proceedings. 15th IEEE International Conference on Application-Specific Systems, Architectures and Processors, 2004..

[2]  Lishan Kang,et al.  A New MOEA for Multi-objective TSP and Its Convergence Property Analysis , 2003, EMO.

[3]  Christian Haubelt,et al.  Using symbolic feasibility tests during design space exploration of heterogeneous multi-processor systems , 2005, 2005 IEEE International Conference on Application-Specific Systems, Architecture Processors (ASAP'05).

[4]  G. Constantinides,et al.  Fault Tolerance Analysis of Distributed Reconfigurable Systems Using SAT-Based Techniques ? , 2003 .

[5]  Carlos A. Coello Coello,et al.  Handling constraints using multiobjective optimization concepts , 2004 .

[6]  Tiziano Villa,et al.  Multi-valued decision diagrams: theory and applications , 1998 .

[7]  Tobias Blickle,et al.  Theory of evolutionary algorithms and application to system synthesis , 1997 .

[8]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[9]  Marco Laumanns,et al.  Analysis and applications of evolutionary multiobjective optimization algorithms , 2003 .

[10]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[11]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[12]  Shapour Azarm,et al.  Multi-level Multi-objective Genetic Algorithm Using Entropy to Preserve Diversity , 2003, EMO.

[13]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[14]  Marco Laumanns,et al.  PISA: A Platform and Programming Language Independent Interface for Search Algorithms , 2003, EMO.

[15]  Christian Haubelt Automatic model based design space exploration for embedded systems: a system level approach , 2005 .

[16]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[17]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[18]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[19]  Kalyanmoy Deb,et al.  Towards a Quick Computation of Well-Spread Pareto-Optimal Solutions , 2003, EMO.

[20]  Weiqi Li Finding Pareto-Optimal Set by Merging Attractors for a Bi-objective Traveling Salesmen Problem , 2005, EMO.

[21]  Sandeep Neema,et al.  System-level synthesis of adaptive computing systems , 2001 .

[22]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[23]  Lothar Thiele,et al.  Conflicting Criteria in Embedded System Design , 2000, IEEE Des. Test Comput..

[24]  Christian Haubelt,et al.  Hierarchical Synthesis of Embedded Systems Using Evolutionary Algorithms , 2003 .

[25]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[26]  Huidong Jin,et al.  Adaptive diversity maintenance and convergence guarantee in multiobjective evolutionary algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[27]  Rolf Drechsler,et al.  Functional simulation using binary decision diagrams , 1997, 1997 Proceedings of IEEE International Conference on Computer Aided Design (ICCAD).

[28]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[29]  Kiyoshi Tanaka,et al.  Selection, Drift, Recombination, and Mutation in Multiobjective Evolutionary Algorithms on Scalable MNK-Landscapes , 2005, EMO.

[30]  Xavier Gandibleux,et al.  1984-2004 - 20 Years of Multiobjective Metaheuristics. But What About the Solution of Combinatorial Problems with Multiple Objectives? , 2005, EMO.

[31]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[32]  Jürgen Teich,et al.  System-Level Synthesis Using Evolutionary Algorithms , 1998, Des. Autom. Embed. Syst..

[33]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[34]  Thomas Stützle,et al.  A Two-Phase Local Search for the Biobjective Traveling Salesman Problem , 2003, EMO.

[35]  Thomas Stützle,et al.  Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study , 2004, Metaheuristics for Multiobjective Optimisation.

[36]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[37]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithms: classifications, analyses, and new innovations , 1999 .

[38]  Niraj K. Jha,et al.  MOGAC: a multiobjective genetic algorithm for hardware-software cosynthesis of distributed embedded systems , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[39]  Kiyoshi Tanaka,et al.  Effects of elitism and population climbing on multiobjective MNK-landscapes , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).