Well-balanced finite volume schemes for nearly steady adiabatic flows

Abstract We present well-balanced finite volume schemes designed to approximate the Euler equations with gravitation. They are based on a novel local steady state reconstruction. The schemes preserve a discrete equivalent of steady adiabatic flow, which includes non-hydrostatic equilibria. The proposed method works in Cartesian, cylindrical and spherical coordinates. The scheme is not tied to any specific numerical flux and can be combined with any consistent numerical flux for the Euler equations, which provides great flexibility and simplifies the integration into any standard finite volume algorithm. Furthermore, the schemes can cope with general convex equations of state, which is particularly important in astrophysical applications. Both first- and second-order accurate versions of the schemes and their extension to several space dimensions are presented. The superior performance of the well-balanced schemes compared to standard schemes is demonstrated in a variety of numerical experiments. The chosen numerical experiments include simple one-dimensional problems in both Cartesian and spherical geometry, as well as two-dimensional simulations of stellar accretion in cylindrical geometry with a complex multi-physics equation of state.

[1]  S. Mishra,et al.  Well-balanced schemes for the Euler equations with gravitation , 2014, J. Comput. Phys..

[2]  Manuel Jesús Castro Díaz,et al.  Well-Balanced High-Order Finite Volume Methods for Systems of Balance Laws , 2020, J. Sci. Comput..

[3]  Eitan Tadmor,et al.  Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes , 2017, J. Comput. Phys..

[4]  J. Novak,et al.  The Explosion Mechanism of Core-Collapse Supernovae: Progress in Supernova Theory and Experiments , 2015, Publications of the Astronomical Society of Australia.

[5]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[6]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[7]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[8]  Christian Klingenberg,et al.  High order well-balanced finite volume methods for multi-dimensional systems of hyperbolic balance laws , 2019, 1903.05154.

[9]  Siddhartha Mishra,et al.  A well-balanced finite volume scheme for the Euler equations with gravitation - The exact preservation of hydrostatic equilibrium with arbitrary entropy stratification , 2016 .

[10]  Rupert Klein,et al.  Well balanced finite volume methods for nearly hydrostatic flows , 2004 .

[11]  Albino Perego,et al.  AN ADVANCED LEAKAGE SCHEME FOR NEUTRINO TREATMENT IN ASTROPHYSICAL SIMULATIONS , 2015, 1511.08519.

[12]  Christian Klingenberg,et al.  A Well-Balanced Scheme for the Euler Equation with a Gravitational Potential , 2014 .

[13]  Randall J. LeVeque,et al.  A Well-Balanced Path-Integral f-Wave Method for Hyperbolic Problems with Source Terms , 2011, J. Sci. Comput..

[14]  M. Popov,et al.  A well-balanced scheme for the simulation tool-kit A-MaZe: implementation, tests, and first applications to stellar structure , 2019, Astronomy & Astrophysics.

[15]  A. Mezzacappa,et al.  Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae , 2002, astro-ph/0210634.

[16]  F. Douglas Swesty,et al.  The Accuracy, Consistency, and Speed of an Electron-Positron Equation of State Based on Table Interpolation of the Helmholtz Free Energy , 2000 .

[17]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[18]  Praveen Chandrashekar,et al.  Well-Balanced Nodal Discontinuous Galerkin Method for Euler Equations with Gravity , 2015, J. Sci. Comput..

[19]  P. Cargo,et al.  Un schéma équilibre adapté au modèle d'atmosphère avec termes de gravité , 1994 .

[20]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[21]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[22]  R. Menikoff,et al.  The Riemann problem for fluid flow of real materials , 1989 .

[23]  Emmanuel Audusse,et al.  A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows , 2004, SIAM J. Sci. Comput..

[24]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[25]  T. Foglizzo,et al.  New insights on the spin-up of a neutron star during core collapse , 2015, 1509.02828.

[26]  D. Raine,et al.  Accretion power in astrophysics , 1985 .

[27]  W. Axford,et al.  The Theory of Stellar Winds and Related Flows , 1970 .

[28]  Yulong Xing,et al.  High order finite volume WENO schemes for the Euler equations under gravitational fields , 2016, J. Comput. Phys..

[29]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[30]  Derek M. Causon,et al.  On the Choice of Wavespeeds for the HLLC Riemann Solver , 1997, SIAM J. Sci. Comput..

[31]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[32]  Christian Klingenberg,et al.  High order discretely well-balanced methods for arbitrary hydrostatic atmospheres , 2020 .

[33]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[34]  Christian Klingenberg,et al.  Arbitrary Order Finite Volume Well-Balanced Schemes for the Euler Equations with Gravity , 2018, SIAM J. Sci. Comput..

[35]  R. LeVeque,et al.  Universality in the run-up of shock waves to the surface of a star , 2010, Journal of Fluid Mechanics.

[36]  L. Gosse A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms☆ , 2000 .

[37]  Randall J. LeVeque,et al.  Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .

[38]  S. Mishra,et al.  High order well-balanced finite volume schemes for simulating wave propagation in stratified magnetic atmospheres , 2010, J. Comput. Phys..

[39]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[40]  T. Foglizzo,et al.  Effect of Rotation on the Stability of a Stalled Cylindrical Shock and Its Consequences for Core-Collapse Supernovae , 2007, 0710.3041.

[41]  Christian Klingenberg,et al.  Well-Balanced Unstaggered Central Schemes for the Euler Equations with Gravitation , 2016, SIAM J. Sci. Comput..

[42]  Laurent Gosse,et al.  Computing Qualitatively Correct Approximations of Balance Laws , 2013 .

[43]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[44]  Culbert B. Laney,et al.  Computational Gasdynamics: Waves , 1998 .

[45]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[46]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[48]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[49]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[50]  Manuel J. Castro,et al.  WELL-BALANCED NUMERICAL SCHEMES BASED ON A GENERALIZED HYDROSTATIC RECONSTRUCTION TECHNIQUE , 2007 .

[51]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[52]  A. Gautschy,et al.  Computational methods for astrophysical fluid flow , 1998 .

[53]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[54]  Eitan Tadmor,et al.  Nonoscillatory Central Schemes for Multidimensional Hyperbolic Conservation Laws , 1998, SIAM J. Sci. Comput..

[55]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[56]  Andrea Mignone,et al.  High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinates , 2014, J. Comput. Phys..

[57]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[58]  G. Krause Hydrostatic equilibrium preservation in MHD numerical simulation with stratified atmospheres , 2019, Astronomy & Astrophysics.

[59]  Andrew King,et al.  Accretion Power in Astrophysics: Contents , 2002 .

[60]  Randall J. LeVeque,et al.  Wave Propagation Methods for Conservation Laws with Source Terms , 1999 .

[61]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[62]  Christian Klingenberg,et al.  A Second Order Well-Balanced Finite Volume Scheme for Euler Equations with Gravity , 2015, SIAM J. Sci. Comput..

[63]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[64]  Tomás Morales de Luna,et al.  A Subsonic-Well-Balanced Reconstruction Scheme for Shallow Water Flows , 2010, SIAM J. Numer. Anal..

[65]  Yulong Xing,et al.  Well-Balanced Discontinuous Galerkin Methods for the Euler Equations Under Gravitational Fields , 2015, J. Sci. Comput..

[66]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[67]  Michael Dumbser,et al.  Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity , 2017, 1712.07765.

[68]  Siddhartha Mishra,et al.  SIMULATING WAVES IN THE UPPER SOLAR ATMOSPHERE WITH SURYA: A WELL-BALANCED HIGH-ORDER FINITE-VOLUME CODE , 2011 .

[69]  C. Campbell Astrophysical flows , 2015 .

[70]  Yulong Xing,et al.  High Order Well-Balanced WENO Scheme for the Gas Dynamics Equations Under Gravitational Fields , 2013, J. Sci. Comput..

[71]  Roger Käppeli,et al.  A Well-Balanced Scheme for the Euler Equations with Gravitation , 2017 .

[72]  Yulong Xing,et al.  Well-balanced finite difference weighted essentially non-oscillatory schemes for the Euler equations with static gravitational fields , 2017, Comput. Math. Appl..

[73]  D. Arnett,et al.  Supernovae and Nucleosynthesis , 1996 .

[74]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[75]  Christian Klingenberg,et al.  High order discretely well-balanced finite volume methods for Euler equations with gravity - without any à priori information about the hydrostatic solution , 2020, ArXiv.

[76]  Yulong Xing,et al.  Well-balanced discontinuous Galerkin methods with hydrostatic reconstruction for the Euler equations with gravitation , 2018, J. Comput. Phys..

[77]  Yulong Xing,et al.  High-order well-balanced finite volume WENO schemes for shallow water equation with moving water , 2007, J. Comput. Phys..

[78]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[79]  Gabriella Puppo,et al.  CWENO: Uniformly accurate reconstructions for balance laws , 2016, Math. Comput..

[80]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[81]  Christian Klingenberg,et al.  Second Order Finite Volume Scheme for Euler Equations with Gravity which is Well-Balanced for General Equations of State and Grid Systems , 2018, Communications in Computational Physics.

[82]  S. Mishra,et al.  Well-balanced high resolution finite volume schemes for the simulation of wave propagation in three-dimensional non-isothermal stratified magneto-atmospheres , 2011 .

[83]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[84]  Jostein R. Natvig,et al.  Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows , 2006, J. Comput. Phys..

[85]  J LeVequeRandall Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .