State-dependent friction force compensation using periodic adaptive learning control

This paper uses the periodic adaptive learning control (PALC) for the compensation of a state-dependent non-Lipschitz external disturbance of electromechanical systems. Theoretically, we are interested in designing a non-Lipschitz friction force compensator, where the friction force is considered position-dependent external disturbance. The key idea of the proposed scheme is to make use of state-periodicity of an external disturbance on the iterative state domain. The state-periodical adaptive compensator designed based on Lyapunov stability analysis guarantees an asymptotical stability of the system after the first iterative trajectory and onwards. The designed-adaptive compensator is verified through an actual DC motor control test.

[1]  Carlos Canudas de Wit,et al.  Adaptive Friction Compensation in Robot Manipulators: Low Velocities , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[2]  Carlos Canudas de Wit,et al.  Adaptive eccentricity compensation , 2000, IEEE Trans. Control. Syst. Technol..

[3]  Ilya V. Burkov,et al.  Active damping of engine speed oscillations based on learning control , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[4]  Darren M. Dawson,et al.  Adaptive control techniques forfrictioncompensation , 1999 .

[5]  S. S. Nair,et al.  Low velocity friction compensation , 1998 .

[6]  Masayoshi Tomizuka,et al.  Application of nonlinear friction compensation to robot arm control , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[7]  B. Friedland,et al.  On adaptive friction compensation without velocity measurement , 1992, [Proceedings 1992] The First IEEE Conference on Control Applications.

[8]  T. Zhang,et al.  Comments on "An exponentially stable adaptive friction compensator" , 2001, IEEE Trans. Autom. Control..

[9]  Y. Chen,et al.  Periodic Adaptive Compensation of State-dependent Disturbance in a Digital Servo Motor System , 2007 .

[10]  Hyo-Sung Ahn,et al.  State-dependent periodic adaptive disturbance compensation , 2007 .

[11]  Teh-Lu Liao,et al.  An exponentially stable adaptive friction compensator , 2000, IEEE Trans. Autom. Control..

[12]  K. Khorasani,et al.  Adaptive friction compensation based on the Lyapunov scheme , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[13]  Bernard Friedland,et al.  On the Modeling and Simulation of Friction , 1990, 1990 American Control Conference.

[14]  Guangjun Liu,et al.  Decomposition-based friction compensation of mechanical systems , 2002 .

[15]  Andrew A. Goldenberg,et al.  Precise slow motion control of a direct-drive robot arm with velocity estimation and friction compensation , 2004 .

[16]  In-Joong Ha,et al.  Iterative identification of state-dependent disturbance torque for high-precision velocity control of servo motors , 1998, IEEE Trans. Autom. Control..

[17]  Carlos Canudas de Wit,et al.  Adaptive Friction Compensation in Robot Manipulators: Low Velocities , 1991, Int. J. Robotics Res..

[18]  M. Singaperumal,et al.  Piston eccentricity and friction force measurement in a hydraulic cylinder in dynamic conditions considering the form deviations on a piston , 2001 .

[19]  Jinhua She,et al.  Elimination of position-dependent disturbances in constant-speed-rotation control systems , 1996 .

[20]  D. Owens,et al.  Error convergence in an adaptive iterative learning controller , 2000 .

[21]  YangQuan Chen,et al.  State-periodic adaptive compensation of cogging and Coulomb friction in permanent-magnet linear motors , 2005 .