Estimation methods for the LRD parameter under a change in the mean

When analyzing time series which are supposed to exhibit long-range dependence (LRD), a basic issue is the estimation of the LRD parameter, for example the Hurst parameter $$H \in (1/2, 1)$$H∈(1/2,1). Conventional estimators of H easily lead to spurious detection of long memory if the time series includes a shift in the mean. This defect has fatal consequences in change-point problems: Tests for a level shift rely on H, which needs to be estimated before, but this estimation is distorted by the level shift. We investigate two blocks approaches to adapt estimators of H to the case that the time series includes a jump and compare them with other natural techniques as well as with estimators based on the trimming idea via simulations. These techniques improve the estimation of H if there is indeed a change in the mean. In the absence of such a change, the methods little affect the usual estimation. As adaption, we recommend an overlapping blocks approach: If one uses a consistent estimator, the adaption will preserve this property and it performs well in simulations.

[1]  R. Leipus,et al.  Change-point in the mean of dependent observations , 1998 .

[2]  F. Breidt,et al.  The detection and estimation of long memory in stochastic volatility , 1998 .

[3]  David L. Mills,et al.  On the long-range dependence of packet round-trip delays in Internet , 1998, ICC '98. 1998 IEEE International Conference on Communications. Conference Record. Affiliated with SUPERCOMM'98 (Cat. No.98CH36220).

[4]  Walter Willinger,et al.  Experimental queueing analysis with long-range dependent packet traffic , 1996, TNET.

[5]  P. Robinson,et al.  Whittle Pseudo-Maximum Likelihood Estimation for Nonstationary Time Series , 2000 .

[6]  Philipp Sibbertsen,et al.  Long memory versus structural breaks: An overview , 2004 .

[7]  Murad S. Taqqu,et al.  A seasonal fractional ARIMA Model applied to the Nile River monthly flows at Aswan , 2000 .

[8]  Rohit S. Deo,et al.  The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series , 1998 .

[9]  Michalis Faloutsos,et al.  Long-range dependence: now you see it, now you don't! , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[10]  S. Fotopoulos,et al.  Inference for single and multiple change‐points in time series , 2013 .

[11]  L. Horváth,et al.  Limit Theorems in Change-Point Analysis , 1997 .

[12]  Q. Shao,et al.  On discriminating between long-range dependence and changes in mean , 2006, math/0607803.

[13]  W. Willinger,et al.  ESTIMATORS FOR LONG-RANGE DEPENDENCE: AN EMPIRICAL STUDY , 1995 .

[14]  R. Leipus,et al.  The change-point problem for dependent observations , 1996 .

[15]  Fabrizio Iacone,et al.  Local Whittle estimation of the memory parameter in presence of deterministic components , 2010 .

[16]  X. Shao,et al.  A simple test of changes in mean in the possible presence of long‐range dependence , 2011 .

[17]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[18]  Lihong Wang CHANGE‐POINT DETECTION WITH RANK STATISTICS IN LONG‐MEMORY TIME‐SERIES MODELS , 2008 .

[19]  Bovas Abraham,et al.  ESTIMATION OF PARAMETERS IN ARFIMA PROCESSES: A SIMULATION STUDY , 2001 .

[20]  C. Velasco Gaussian Semiparametric Estimation of Non‐stationary Time Series , 1999 .

[21]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[22]  Pierre Perron,et al.  MEMORY PARAMETER ESTIMATION IN THE PRESENCE OF LEVEL SHIFTS AND DETERMINISTIC TRENDS , 2012, Econometric Theory.

[23]  C. Hurvich,et al.  ASYMPTOTICS FOR THE LOW‐FREQUENCY ORDINATES OF THE PERIODOGRAM OF A LONG‐MEMORY TIME SERIES , 1993 .

[24]  Jan Beran,et al.  Long-Memory Processes: Probabilistic Properties and Statistical Methods , 2013 .

[25]  L. Horváth,et al.  The effect of long-range dependence on change-point estimators , 1997 .

[26]  A. Lo Long-Term Memory in Stock Market Prices , 1989 .

[27]  P. E. Kopp,et al.  Stock Price Returns and the Joseph Effect: A Fractional Version of the Black-Scholes Model , 1995 .

[28]  Lihong Wang Change-in-mean problem for long memory time series models with applications , 2008 .

[29]  Testing for a break in persistence under long-range dependencies and mean shifts , 2012 .

[30]  Richard T. Baillie,et al.  Long memory processes and fractional integration in econometrics , 1996 .

[31]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[32]  Uwe Hassler,et al.  Long Memory and Structural Change: New Evidence from German Stock Market Returns , 2007 .

[33]  Christopher F. Baum,et al.  Long memory in the Greek stock market , 1997 .

[34]  P. Whittle,et al.  Estimation and information in stationary time series , 1953 .

[35]  Lihong Wang,et al.  Change-Point Estimation in Long Memory Nonparametric Models with Applications , 2007, Commun. Stat. Simul. Comput..

[36]  Peter C. B. Phillips,et al.  Exact Local Whittle Estimation of Fractional Integration , 2002 .

[37]  Walter Willinger,et al.  Stock market prices and long-range dependence , 1999, Finance Stochastics.

[38]  Rohit S. Deo,et al.  Linear Trend with Fractionally Integrated Errors , 1998 .

[39]  Daniela Jarušková,et al.  Some Problems with Application of Change-Point Detection Methods to Environmental Data , 1997 .

[40]  Ying-Wong Cheung,et al.  A search for long memory in international stock market returns , 1995 .

[41]  C. Granger,et al.  Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns , 2004 .

[42]  P. Phillips,et al.  Local Whittle estimation in nonstationary and unit root cases , 2004, math/0406462.

[43]  Uwe Hassler,et al.  Detecting changes from short to long memory , 2011 .

[44]  Chih-Chiang Hsu Long memory or structural changes: An empirical examination on inflation rates , 2005 .

[45]  Non‐Parametric Change‐Point Tests for Long‐Range Dependent Data , 2013 .

[46]  Murad S. Taqqu,et al.  On estimating the intensity of long-range dependence in finite and infinite variance time series , 1998 .

[47]  F. Diebold,et al.  Long Memory and Regime Switching , 2000 .

[48]  A. Walden,et al.  Wavelet Methods for Time Series Analysis , 2000 .

[49]  L. Gil‐Alana Statistical Modeling of the Temperatures in the Northern Hemisphere Using Fractional Integration Techniques , 2005 .

[50]  P. Robinson Log-Periodogram Regression of Time Series with Long Range Dependence , 1995 .