A multiple neighborhood search for dynamic memory allocation in embedded systems

Memory allocation has a significant impact on power consumption in embedded systems. We address the dynamic memory allocation problem, in which memory requirements may change at each time interval. This problem has previously been addressed using integer linear programming and iterative approaches which build a solution interval by interval taking into account the requirements of partial time intervals. A GRASP that builds a solution for all time intervals has been proposed as a global approach. Due to the complexity of this problem, the GRASP algorithm solution quality decreases for larger instances. In order to overcome this drawback, we propose a multiple neighborhood search hybridized with a Tabu Search and enhanced by complex ejection chains. The proposed approach outperforms all previously developed methods devised for the dynamic memory allocation problem.

[1]  Sara Ceschia,et al.  Tabu search techniques for the heterogeneous vehicle routing problem with time windows and carrier-dependent costs , 2011, J. Sched..

[2]  Luca Di Gaspero,et al.  Multi-neighbourhood Local Search with Application to Course Timetabling , 2002, PATAT.

[3]  G. Dantzig Discrete-Variable Extremum Problems , 1957 .

[4]  André Rossi,et al.  Memory Allocation Problems in Embedded Systems: Soto/Memory Allocation Problems in Embedded Systems , 2012 .

[5]  Thomas Stützle,et al.  Advances in Metaheuristics , 2013 .

[6]  Ching-Ter Chang Optimization approach for data allocation in multidisk database , 2002, Eur. J. Oper. Res..

[7]  Anjali Mahajan,et al.  Hybrid Evolutionary Algorithm for the Graph Coloring Register Allocation Problem for Embedded Systems , 2009, Trans. Comput. Sci..

[8]  Richard C. Dorf,et al.  Systems, Controls, Embedded Systems, Energy, and Machines (The Electrical Engineering Handbook; Third Edition) , 2006 .

[9]  Luca Di Gaspero,et al.  Neighborhood Portfolio Approach for Local Search Applied to Timetabling Problems , 2006, J. Math. Model. Algorithms.

[10]  Carlos Cotta,et al.  Adaptive and multilevel metaheuristics , 2008 .

[11]  Andrew W. Appel,et al.  Formal Verification of Coalescing Graph-Coloring Register Allocation , 2010, ESOP.

[12]  Jens Vygen,et al.  BonnPlace: Placement of Leading-Edge Chips by Advanced Combinatorial Algorithms , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[13]  Francky Catthoor,et al.  Custom Memory Management Methodology: Exploration of Memory Organisation for Embedded Multimedia System Design , 1998 .

[14]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[15]  Xuan Du,et al.  Optimizing the performance of chip shooter machine based on improved genetic algorithm , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[16]  Hugo De Man,et al.  Power exploration for data dominated video applications , 1996, ISLPED '96.

[17]  Jin-Kao Hao,et al.  An effective multilevel tabu search approach for balanced graph partitioning , 2011, Comput. Oper. Res..

[18]  H. Besbes,et al.  A solution to reduce noise enhancement in pre-whitened LMS-type algorithms: the double direction adaptation , 2004, First International Symposium on Control, Communications and Signal Processing, 2004..

[19]  Jin-Kao Hao,et al.  Diversity Control and Multi-Parent Recombination for Evolutionary Graph Coloring Algorithms , 2009, EvoCOP.

[20]  René Schott,et al.  A Tabu Search Heuristic for Scratch-Pad Memory Management , 2010, ICSE 2010.

[21]  Pierre Hansen,et al.  Variable neighbourhood search: methods and applications , 2010, Ann. Oper. Res..

[22]  Andreas Reinholz,et al.  A Hybrid (1+1)-Evolutionary Strategy for the Open Vehicle Routing Problem , 2013 .

[23]  Georges Zaccour,et al.  Decision and control in management science , 2002 .

[24]  André Rossi,et al.  VNS for High Level Synthesis , 2009 .

[25]  B. Korte,et al.  Combinatorial Problems in Chip Design , 2008 .

[26]  André Rossi,et al.  Tabu Search for Multiprocessor Scheduling: Application to High Level Synthesis , 2011, Asia Pac. J. Oper. Res..

[27]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[28]  Teodor Gabriel Crainic,et al.  A parallel multi-neighborhood cooperative tabu search for capacitated vehicle routing problems , 2012, Eur. J. Oper. Res..

[29]  H. De Man,et al.  Power exploration for data dominated video applications , 1996, Proceedings of 1996 International Symposium on Low Power Electronics and Design.

[30]  Francky Catthoor,et al.  Custom Memory Management Methodology , 1998, Springer US.

[31]  Pierre Hansen,et al.  Industrial Applications of the Variable Neighborhood Search Metaheuristic , 2002 .

[32]  André Rossi,et al.  Two Iterative Metaheuristic Approaches to Dynamic Memory Allocation for Embedded Systems , 2011, EvoCOP.

[33]  André Rossi,et al.  Two upper bounds on the chromatic number , 2009 .

[34]  Emmanuel Casseau,et al.  A formal method for hardware IP design and integration under I/O and timing constraints , 2006, TECS.

[35]  André Rossi,et al.  Memory Allocation Problems in Embedded Systems: Optimization Methods , 2012 .

[36]  Nenad Mladenovic,et al.  Variable neighbourhood decomposition search for 0-1 mixed integer programs , 2009, Comput. Oper. Res..

[37]  Jean-Philippe Diguet,et al.  Key Research Issues for Reconfigurable Network-on-Chip , 2008, 2008 International Conference on Reconfigurable Computing and FPGAs.

[38]  Philipp Klaus Krause,et al.  The complexity of register allocation , 2014, Discret. Appl. Math..

[39]  Patrick De Causmaecker,et al.  A hybrid tabu search algorithm for automatically assigning patients to beds , 2010, Artif. Intell. Medicine.

[40]  M. F. Fuller,et al.  Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .

[41]  Kenneth Sörensen,et al.  "Multiple Neighbourhood" Search in Commercial VRP Packages: Evolving Towards Self-Adaptive Methods , 2008, Adaptive and Multilevel Metaheuristics.

[42]  Thomas Sttzle,et al.  Applying iterated local search to the permutation ow shop problem , 1998 .

[43]  Jens Palsberg,et al.  Register allocation by puzzle solving , 2008, PLDI '08.

[44]  Ming-Hua Lin An optimal workload-based data allocation approach for multidisk databases , 2009, Data Knowl. Eng..

[45]  Marc Sevaux,et al.  Métaheuristiques pour l'allocation de mémoire dans les systèmes embarqués , 2010 .

[46]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[47]  Richard C. Dorf Systems, Controls, Embedded Systems, Energy, and Machines , 2006 .

[48]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .

[49]  André Rossi,et al.  Iterative approaches for a dynamic memory allocation problem in embedded systems , 2013, Eur. J. Oper. Res..

[50]  Mike Preuss,et al.  Experiments on metaheuristics: Methodological overview and open issues , 2007 .

[51]  Luca Benini,et al.  Efficient system-level prototyping of power-aware dynamic memory managers for embedded systems , 2006, Integr..

[52]  André Rossi,et al.  GRASP with ejection chains for the dynamic memory allocation in embedded systems , 2014, Soft Comput..

[53]  Eric Senn,et al.  Power Consumption Modeling and Characterization of the TI C6201 , 2003, IEEE Micro.

[54]  Marc Sevaux,et al.  A mathematical model and a metaheuristic approach for a memory allocation problem , 2011, Journal of Heuristics.

[55]  Luca Fanucci,et al.  VLSI architecture for a low-power video codec system , 2002 .

[56]  André Rossi,et al.  From simple heuristics to evolutionary approach for routing messages in a NoC , 2010 .

[57]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[58]  René Schott,et al.  Reduction of Energy Consumption in Embedded Systems: A Hybrid Evolutionary Algorithm , 2010 .

[59]  Toni Robertson,et al.  Building bridges: negotiating the gap between work practice and technology design , 2000, Int. J. Hum. Comput. Stud..

[60]  André Rossi,et al.  Advanced Metaheuristics for High-Level Synthesis , 2010 .