The significance of organic separates to carbon dynamics and its modelling in some cultivated soils

Les modeles de la dynamique du carbon des sols repartissent le carbone du sol en compartiments fonctionnels, de durees de vie tres differentes. On a cherche a separer materiellement les composes de durees de vie differentes, afin de proposer des estimateurs de ces compartiments. Les vitesses de renouvellement sont mesurees par la methode du marquage naturel en l3 C, dans des sols en culture cerealiere (maos) provenant d'experimentations de longue duree. Le modele de Rothamsted donne une bonne representation de la dynamique observee. Les fractions granulometriques grossieres permettent de quantifier le compartiment structural d'origine vegetale des modeles. Les composes extractibles a l'eau sont enrichis en composes jeunes, mais ne sont pas identifiables aux compartiments labiles. Concernant les matieres organiques <50 μm, aucune des methodes classiques evaluees (hydrolyses acides, oxydations humides, oxydations thermiques, pyrolyses, extraction alcalines) ne permettent de separer des composes de vitesses de renouvellement differentes. L'analyse permet de rejeter l'hypothese de formation des acides humiques par condensation des acides fulviques. La localization et la protection physique des matieres organiques apparaot comme plus determinante pour leur vitesse de biodegradation que leur appartenance a une famille chimique.

[1]  William J. Parton,et al.  Comparison of laboratory and modeling simulation methods for estimating soil carbon pools in tropical forest soils , 1994 .

[2]  J. Skjemstad,et al.  Soil structure and carbon cycling , 1994 .

[3]  P. Härter,et al.  INFLUENCE OF MANAGEMENT ON THE ORGANIC MATTER OF A MINERAL SOIL1 , 1992 .

[4]  André Mariotti,et al.  Natural 13C abundance as a tracer for studies of soil organic matter dynamics , 1987 .

[5]  J. Balesdent,et al.  Effect of tillage on soil organic carbon mineralization estimated from 13C abundance in maize fields , 1990 .

[6]  J. Balesdent,et al.  Measurement of soil organic matter turnover using 13C natural abundance. , 1996 .

[7]  J. Balesdent,et al.  Maize root-derived soil organic carbon estimated by natural 15c abundance , 1992 .

[8]  J. Balesdent The turnover of soil organic fractions estimated by radiocarbon dating , 1987 .

[9]  J. Balesdent,et al.  Input of fertilizer-derived labelled n to soil organic matter during a growing season of maize in the field , 1992 .

[10]  D. S. Jenkinson,et al.  THE TURNOVER OF SOIL ORGANIC MATTER IN SOME OF THE ROTHAMSTED CLASSICAL EXPERIMENTS , 1977 .

[11]  D. Focht Nature and Origin of Carbohydrates in Soils , 1981 .

[12]  Shahamat U. Khan,et al.  Humic substances in the environment , 1972 .

[13]  J. Balesdent,et al.  Medium‐term transformations of organic N in a cultivated soil , 1995 .

[14]  E. Vance,et al.  Calculating net primary production and annual input of organic matter to soil from the amount and radiocarbon content of soil organic matter , 1992 .

[15]  C. Feller,et al.  Application du traçage isotopique naturel en 13C, à l'étude de la dynamique de la matière organique dans les sols , 1985 .

[16]  E. T. Elliott,et al.  Particulate soil organic-matter changes across a grassland cultivation sequence , 1992 .

[17]  J. Southon,et al.  AMS 14C Measurements of Fractionated Soil Organic Matter: An Approach to Deciphering the Soil Carbon Cycle , 1989, Radiocarbon.

[18]  B. Christensen Physical Fractionation of Soil and Organic Matter in Primary Particle Size and Density Separates , 1992 .

[19]  G. H. Wagner,et al.  Microbial Colonization and Decomposition of Corn, Wheat, and Soybean Residue , 1988 .

[20]  J. Skjemstad,et al.  Structural and dynamic properties of soil organic-matter as reflected by 13C natural-abundance, pyrolysis mass-spectrometry and solid-state 13C NMR-spectroscopy in density fractions of an oxisol under forest and pasture , 1995 .

[21]  C. Feller Une méthode de fractionnement granulométrique de la matière organique des sols : application aux sols tropicaux, à textures grossières, très pauvres en humus , 1979 .

[22]  C. Feller,et al.  Effets des ultrasons sur la distribution granulométrique des matières organiques des sols , 1991 .

[23]  G. Monnier,et al.  Un aspect de la dynamique des matieres organiques du sol , 1959 .

[24]  H. Schulten,et al.  Characterization of clay–organic‐matter complexes resistant to oxidation by peroxide , 1995 .

[25]  W. Parton,et al.  Analysis of factors controlling soil organic matter levels in Great Plains grasslands , 1987 .

[26]  D. Anderson,et al.  Organo-Mineral Complexes and Their Study by Radiocarbon Dating1 , 1984 .