Lidocaine turns the surface charge of biological membranes more positive and changes the permeability of blood-brain barrier culture models.

[1]  Carrie Schroeder,et al.  Local Anesthetics , 2018, Pain.

[2]  H. Tomita,et al.  Brain-Specific Ultrastructure of Capillary Endothelial Glycocalyx and Its Possible Contribution for Blood Brain Barrier , 2018, Scientific Reports.

[3]  G. Rákhely,et al.  Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport , 2018, Front. Mol. Neurosci..

[4]  G. Lip,et al.  Antiarrhythmic drugs-clinical use and clinical decision making: a consensus document from the European Heart Rhythm Association (EHRA) and European Society of Cardiology (ESC) Working Group on Cardiovascular Pharmacology, endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society , 2018, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[5]  G. Balogh,et al.  Solubility, Delivery and ADME Problems of Drugs and Drug-Candidates , 2018 .

[6]  H. Daykin The efficacy and safety of intravenous lidocaine for analgesia in the older adult: a literature review , 2017, British journal of pain.

[7]  M. Dong,et al.  Mapping surface charge density of lipid bilayers by quantitative surface conductivity microscopy , 2016, Nature Communications.

[8]  P. Couraud,et al.  In vitro models of the blood–brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use , 2016, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  G. Rákhely,et al.  Reversible Opening of Intercellular Junctions of Intestinal Epithelial and Brain Endothelial Cells With Tight Junction Modulator Peptides. , 2016, Journal of pharmaceutical sciences.

[10]  Szilvia Veszelka,et al.  Tesmilifene modifies brain endothelial functions and opens the blood–brain/blood–glioma barrier , 2015, Journal of neurochemistry.

[11]  Z. Török,et al.  Cultured cells of the blood–brain barrier from apolipoprotein B-100 transgenic mice: effects of oxidized low-density lipoprotein treatment , 2015, Fluids and Barriers of the CNS.

[12]  H. Tsuchiya,et al.  Interaction of Local Anesthetics with Biomembranes Consisting of Phospholipids and Cholesterol: Mechanistic and Clinical Implications for Anesthetic and Cardiotoxic Effects , 2013, Anesthesiology research and practice.

[13]  John M Tarbell,et al.  Mechano‐sensing and transduction by endothelial surface glycocalyx: composition, structure, and function , 2013, Wiley interdisciplinary reviews. Systems biology and medicine.

[14]  L. Zimányi,et al.  Effect of Hofmeister cosolutes on the photocycle of photoactive yellow protein at moderately alkaline pH. , 2013, Journal of photochemistry and photobiology. B, Biology.

[15]  H. Scheidt,et al.  Interaction of local anesthetics with lipid bilayers investigated by ¹H MAS NMR spectroscopy. , 2012, Biochimica et biophysica acta.

[16]  Marco M. Domingues,et al.  Translocating the blood-brain barrier using electrostatics , 2012, Front. Cell. Neurosci..

[17]  M. Deli Drug transport and the blood-brain barrier , 2011 .

[18]  Marco M. Domingues,et al.  Chemical conjugation of the neuropeptide kyotorphin and ibuprofen enhances brain targeting and analgesia. , 2011, Molecular pharmaceutics.

[19]  B. Fu,et al.  An electrodiffusion model for the blood-brain barrier permeability to charged molecules. , 2011, Journal of biomechanical engineering.

[20]  M. Miyata,et al.  Involvement of an influx transporter in the blood–brain barrier transport of naloxone , 2010, Biopharmaceutics & drug disposition.

[21]  David J. Begley,et al.  Structure and function of the blood–brain barrier , 2010, Neurobiology of Disease.

[22]  S. Beggs,et al.  Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier , 2010, Molecular pain.

[23]  Á. Kittel,et al.  A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes , 2009, Neurochemistry International.

[24]  J. Scherrmann,et al.  CNS Delivery Via Adsorptive Transcytosis , 2008, The AAPS Journal.

[25]  Marco M. Domingues,et al.  What can light scattering spectroscopy do for membrane‐active peptide studies? , 2008, Journal of peptide science : an official publication of the European Peptide Society.

[26]  I. Larre,et al.  Tight junction and polarity interaction in the transporting epithelial phenotype. , 2008, Biochimica et biophysica acta.

[27]  A. Lyubartsev,et al.  Effect of local anesthetic lidocaine on electrostatic properties of a lipid bilayer. , 2008, Biophysical journal.

[28]  J. Greenwood,et al.  Blood‐brain barrier‐specific properties of a human adult brain endothelial cell line , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[29]  Y. Baba,et al.  Regeneration and inhibition of proton pumping activity of bacteriorhodopsin blue membrane by cationic amine anesthetics. , 2005, Biochimica et biophysica acta.

[30]  P Couvreur,et al.  Puromycin‐based purification of rat brain capillary endothelial cell cultures. Effect on the expression of blood–brain barrier‐specific properties , 2005, Journal of neurochemistry.

[31]  H. Kamaya,et al.  Dissociation equilibrium between uncharged and charged local anesthetic lidocaine in a surface-adsorbed film , 2005 .

[32]  Masami Niwa,et al.  Permeability Studies on In Vitro Blood–Brain Barrier Models: Physiology, Pathology, and Pharmacology , 2005, Cellular and Molecular Neurobiology.

[33]  Katsuaki Tanaka,et al.  The P-glycoprotein inhibitor quinidine decreases the threshold for bupivacaine-induced, but not lidocaine-induced, convulsions in rats , 2003, Canadian journal of anaesthesia = Journal canadien d'anesthesie.

[34]  M. Hanano,et al.  Investigation on the influx transport mechanism of pentazocine at the blood-brain barrier in rats using the carotid injection technique. , 2002, Biological & pharmaceutical bulletin.

[35]  W. G. Wood,et al.  Amphiphilic effects of local anesthetics on rotational mobility in neuronal and model membranes. , 2002, Biochimica et biophysica acta.

[36]  E. Muneyuki,et al.  Photocurrent of purple membrane adsorbed onto a thin polymer film: action characteristics of the local anesthetics , 2002 .

[37]  D. Saint,et al.  Interaction of lidocaine with the cardiac sodium channel: effects of low extracellular pH are consistent with an external blocking site. , 2000, Life sciences.

[38]  J. Lanyi,et al.  Pathways of proton release in the bacteriorhodopsin photocycle. , 1992, Biochemistry.

[39]  V. Baughman,et al.  Lidocaine blood levels following aerosolization and intravenous administration. , 1992, Journal of clinical anesthesia.

[40]  K. Shuler,et al.  Control of bacteriorhodopsin color by chloride at low pH. Significance for the proton pump mechanism. , 1990, Biochimica et biophysica acta.

[41]  W. Stigelman,et al.  Goodman and Gilman's the Pharmacological Basis of Therapeutics , 1986 .

[42]  J. Simon,et al.  Time-resolved photoelectric and absorption signals from oriented purple membranes immobilized in gel. , 1985, Journal of biochemical and biophysical methods.

[43]  W. Stoeckenius,et al.  SALT AND pH‐DEPENDENT CHANGES OF THE PURPLE MEMBRANE ABSORPTION SPECTRUM , 1984, Photochemistry and photobiology.

[44]  H. Pitkow,et al.  Basic and Clinical Pharmacology , 1983 .

[45]  B. Johansson,et al.  Do Nitrous Oxide and Lidocaine Modify the BloodBrain Barrier in Acute Hypertension in the Rat? , 1980, Acta anaesthesiologica Scandinavica.

[46]  W. Stoeckenius,et al.  Bacteriorhodopsin and the purple membrane of halobacteria. , 1979, Biochimica et biophysica acta.

[47]  L. Wojtczak,et al.  Surface change of biological membranes as a possible regulator of membrane-bound enzymes. , 1979, European journal of biochemistry.

[48]  M. Sheetz,et al.  Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[49]  P. Seeman,et al.  The membrane actions of anesthetics and tranquilizers. , 1972, Pharmacological reviews.

[50]  D. Oesterhelt,et al.  Rhodopsin-like protein from the purple membrane of Halobacterium halobium. , 1971, Nature: New biology.

[51]  Alfred Gilman,et al.  The Pharmacological Basis of Therapeutics , 1941, Nature.

[52]  Pál Ormos,et al.  A versatile lab-on-a-chip tool for modeling biological barriers , 2016 .

[53]  E. Hansson,et al.  Astrocyte–endothelial interactions at the blood–brain barrier , 2006, Nature Reviews Neuroscience.