On Semantic Properties of Fuzzy Quantifiers over Fuzzy Universes: Restriction and Living on

The article investigates important semantic properties of fuzzy quantifiers, namely restriction and living on a (fuzzy) set. These properties are introduced in the novel frame of fuzzy quantifiers over fuzzy universes.

[1]  A. Mostowski On a generalization of quantifiers , 1957 .

[2]  C.J.H. Mann,et al.  Fuzzy Relational Systems: Foundations and Principles , 2003 .

[3]  J. Barwise,et al.  Generalized quantifiers and natural language , 1981 .

[4]  Michal Holčapek Monadic L-fuzzy Quantifiers of the Type <1n,1> , 2007, EUSFLAT Conf..

[5]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[6]  Antonín Dvorák,et al.  L-fuzzy quantifiers of type 23291232a determined by fuzzy measures , 2009, Fuzzy Sets Syst..

[7]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[8]  Perlindström First Order Predicate Logic with Generalized Quantifiers , 1966 .

[9]  A. Dvořák,et al.  Type <1, 1> fuzzy quantifiers determined by fuzzy measures on residuated lattices. Part I. Basic definitions and examples , 2014, Fuzzy Sets Syst..

[10]  Stanley Peters,et al.  Quantifiers in language and logic , 2006 .

[11]  Dag Westerståhl,et al.  Generalized Quantifiers in Linguistics and Logic , 1997, Handbook of Logic and Language.

[12]  Ingo Glöckner Fuzzy quantifiers in natural language:: semantics and computational models , 2004 .

[13]  Antonín Dvorák,et al.  Type 〈1, 1〉 fuzzy quantifiers determined by fuzzy measures on residuated lattices. Part III. Extension, conservativity and extensionality , 2015, Fuzzy Sets Syst..

[14]  Dag Westerståhl,et al.  19 – Generalized Quantifiers in Linguistics and Logic* , 2011 .

[15]  Michal Holčapek,et al.  Monadic L-fuzzy Quantifiers of the Type . , 2007 .

[16]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[17]  Antonín Dvorák,et al.  Relativization of Fuzzy Quantifiers: Initial Investigations , 2017, EUSFLAT/IWIFSGN.