High-resolution structure of the presynaptic RAD51 filament on single-stranded DNA by electron cryo-microscopy

Homologous DNA recombination (HR) by the RAD51 recombinase enables error-free DNA break repair. To execute HR, RAD51 first forms a presynaptic filament on single-stranded (ss) DNA, which catalyses pairing with homologous double-stranded (ds) DNA. Here, we report a structure for the presynaptic human RAD51 filament at 3.5–5.0Å resolution using electron cryo-microscopy. RAD51 encases ssDNA in a helical filament of 103Å pitch, comprising 6.4 protomers per turn, with a rise of 16.1Å and a twist of 56.2°. Inter-protomer distance correlates with rotation of an α-helical region in the core catalytic domain that is juxtaposed to ssDNA, suggesting how the RAD51–DNA interaction modulates protomer spacing and filament pitch. We map Fanconi anaemia-like disease-associated RAD51 mutations, clarifying potential phenotypes. We predict binding sites on the presynaptic filament for two modules present in each BRC repeat of the BRCA2 tumour suppressor, a critical HR mediator. Structural modelling suggests that changes in filament pitch mask or expose one binding site with filament-inhibitory potential, rationalizing the paradoxical ability of the BRC repeats to either stabilize or inhibit filament formation at different steps during HR. Collectively, our findings provide fresh insight into the structural mechanism of HR and its dysregulation in human disease.

[1]  A Leith,et al.  SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. , 1996, Journal of structural biology.

[2]  C. Bell,et al.  Crystal structures of Escherichia coli RecA in complex with MgADP and MnAMP-PNP. , 2004, Biochemistry.

[3]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[4]  S. Kowalczykowski,et al.  Purified human BRCA2 stimulates RAD51-mediated recombination , 2010, Nature.

[5]  M. Madhusudhan,et al.  Molecular Mechanism Underlying ATP-Induced Conformational Changes in the Nucleoprotein Filament of Mycobacterium smegmatis RecA. , 2016, Biochemistry.

[6]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[7]  B. Nordén,et al.  Structure of human Rad51 protein filament from molecular modeling and site-specific linear dichroism spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[8]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[9]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[10]  E. Orlova,et al.  Structure of the hDmc1-ssDNA Filament Reveals the Principles of Its Architecture , 2010, PloS one.

[11]  L. Hood,et al.  A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51 , 2015, Nature Communications.

[12]  J. Weidhaas,et al.  Tumor-associated mutations in a conserved structural motif alter physical and biochemical properties of human RAD51 recombinase , 2014, Nucleic acids research.

[13]  David Klenerman,et al.  The BRC repeats of human BRCA2 differentially regulate RAD51 binding on single- versus double-stranded DNA to stimulate strand exchange , 2009, Proceedings of the National Academy of Sciences.

[14]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[15]  Gijs J. L. Wuite,et al.  Counting RAD51 proteins disassembling from nucleoprotein filaments under tension , 2008, Nature.

[16]  R. Henderson,et al.  High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy☆ , 2013, Ultramicroscopy.

[17]  D. Agard,et al.  Electron counting and beam-induced motion correction enable near atomic resolution single particle cryoEM , 2013, Nature Methods.

[18]  P. Baumann,et al.  Purification of human Rad51 protein by selective spermidine precipitation. , 1997, Mutation research.

[19]  S. West,et al.  BRCA2 BRC motifs bind RAD51-DNA filaments. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Gabriel,et al.  A Dominant Mutation in Human RAD51 Reveals Its Function in DNA Interstrand Crosslink Repair Independent of Homologous Recombination. , 2015, Molecular cell.

[21]  M. Spies,et al.  Contributions of the RAD51 N-terminal domain to BRCA2-RAD51 interaction , 2013, Nucleic acids research.

[22]  E. Egelman A robust algorithm for the reconstruction of helical filaments using single-particle methods. , 2000, Ultramicroscopy.

[23]  S. Kowalczykowski An Overview of the Molecular Mechanisms of Recombinational DNA Repair. , 2015, Cold Spring Harbor perspectives in biology.

[24]  Ashok R. Venkitaraman,et al.  The BRC Repeats of BRCA2 Modulate the DNA-Binding Selectivity of RAD51 , 2009, Cell.

[25]  Alan Brown,et al.  Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions , 2015, Acta crystallographica. Section D, Biological crystallography.

[26]  N. Pavletich,et al.  Mechanism of homologous recombination from the RecA–ssDNA/dsDNA structures , 2008, Nature.

[27]  P. Bork,et al.  Internal repeats in the BRCA2 protein sequence , 1996, Nature Genetics.

[28]  A. Sali,et al.  Statistical potential for assessment and prediction of protein structures , 2006, Protein science : a publication of the Protein Society.

[29]  A. Jeyasekharan,et al.  A cancer-associated BRCA2 mutation reveals masked nuclear export signals controlling localization , 2013, Nature Structural &Molecular Biology.

[30]  Phoebe A Rice,et al.  Crystal structure of a Rad51 filament , 2004, Nature Structural &Molecular Biology.

[31]  G E Tomlinson,et al.  BRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo. , 1999, Cancer research.

[32]  John A Tainer,et al.  Full‐length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2 , 2003, The EMBO journal.

[33]  S. Kowalczykowski,et al.  Two classes of BRC repeats in BRCA2 promote RAD51 nucleoprotein filament function by distinct mechanisms , 2011, Proceedings of the National Academy of Sciences.

[34]  T. Steitz,et al.  Structure of the recA protein–ADP complex , 1992, Nature.

[35]  L. Symington,et al.  Rad51 gain-of-function mutants that exhibit high affinity DNA binding cause DNA damage sensitivity in the absence of Srs2 , 2008, Nucleic acids research.

[36]  R. Baskin,et al.  Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules , 2009, Proceedings of the National Academy of Sciences.

[37]  Ashok R. Venkitaraman,et al.  Two modules in the BRC repeats of BRCA2 mediate structural and functional interactions with the RAD51 recombinase , 2009, Nucleic acids research.

[38]  C. Oubridge,et al.  CryoEM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Å resolution , 2016, Nature.

[39]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[40]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[41]  D. Livingston,et al.  BRCA1, BRCA2, and Rad51 operate in a common DNA damage response pathway. , 1999, Cancer research.

[42]  J. M. Smith,et al.  Ximdisp--A visualization tool to aid structure determination from electron microscope images. , 1999, Journal of structural biology.

[43]  Sjors H.W. Scheres,et al.  A Bayesian View on Cryo-EM Structure Determination , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[44]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[45]  S. Yokoyama,et al.  The N-terminal domain of the human Rad51 protein binds DNA: structure and a DNA binding surface as revealed by NMR. , 1999, Journal of molecular biology.

[46]  S C West,et al.  Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. , 2001, Molecular cell.

[47]  Irene T. Weber,et al.  The structure of the E. coli recA protein monomer and polymer , 1992, Nature.

[48]  P. Bartel,et al.  RAD51 Interacts with the Evolutionarily Conserved BRC Motifs in the Human Breast Cancer Susceptibility Gene brca2 * , 1997, The Journal of Biological Chemistry.

[49]  S. West,et al.  Gross chromosomal rearrangements and genetic exchange between nonhomologous chromosomes following BRCA2 inactivation. , 2000, Genes & development.

[50]  S C West,et al.  Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Y. Chen,et al.  The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[52]  P. Baumann,et al.  Human Rad51 Protein Promotes ATP-Dependent Homologous Pairing and Strand Transfer Reactions In Vitro , 1996, Cell.

[53]  N. Grigorieff,et al.  Accurate determination of local defocus and specimen tilt in electron microscopy. , 2003, Journal of structural biology.

[54]  E. Egelman,et al.  Similarity of the yeast RAD51 filament to the bacterial RecA filament. , 1993, Science.

[55]  S. West,et al.  The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA , 2010, Nature Structural &Molecular Biology.

[56]  Tom L. Blundell,et al.  Insights into DNA recombination from the structure of a RAD51–BRCA2 complex , 2002, Nature.

[57]  Z. Zhou,et al.  Atomic Structure of T6SS Reveals Interlaced Array Essential to Function , 2015, Cell.

[58]  P. Sung Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. , 1994, Science.