Nanoporous silicon networks as anodes for lithium ion batteries.

Nanoporous silicon (Si) networks with controllable porosity and thickness are fabricated by a simple and scalable electrochemical process, and then released from Si wafers and transferred to flexible and conductive substrates. These nanoporous Si networks serve as high performance Li-ion battery electrodes, with an initial discharge capacity of 2570 mA h g(-1), above 1000 mA h g(-1) after 200 cycles without any electrolyte additives.

[1]  Hui Wu,et al.  A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. , 2012, Nano letters.

[2]  S. Biswal,et al.  Gold-coated porous silicon films as anodes for lithium ion batteries , 2012 .

[3]  Yi Cui,et al.  Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. , 2012, Nature nanotechnology.

[4]  Haoshen Zhou,et al.  Hierarchical micro/nano porous silicon Li-ion battery anodes. , 2012, Chemical communications.

[5]  M. Ge,et al.  Porous doped silicon nanowires for lithium ion battery anode with long cycle life. , 2012, Nano letters.

[6]  G. Yushin,et al.  A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries , 2011, Science.

[7]  Kumar L. Vanga,et al.  Optical properties of thick ordered mesoporous silica membranes , 2011 .

[8]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[9]  P. Novák,et al.  A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries , 2010 .

[10]  Yanfa Yan,et al.  Conformal surface coatings to enable high volume expansion Li-ion anode materials. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[12]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[13]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[14]  D. Guyomard,et al.  Silicon Composite Electrode with High Capacity and Long Cycle Life , 2009 .

[15]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[16]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[17]  M. Armand,et al.  Building better batteries , 2008, Nature.

[18]  J. Tarascon,et al.  Si Electrodes for Li-Ion batteries- A new way to look at an old problem , 2008 .

[19]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[20]  M. Whittingham Lithium Batteries and Cathode Materials , 2004 .

[21]  F. E. Little,et al.  Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures , 2004 .

[22]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[23]  D. Aurbach Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries , 2000 .

[24]  Matsumoto,et al.  Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites. , 1993, Physical review. B, Condensed matter.

[25]  R. Tenne,et al.  Photoelectrochemical etching of silicon , 1992 .