Synaptic Loss in Primary Tauopathies Revealed by [11C]UCB‐J Positron Emission Tomography

Synaptic loss is a prominent and early feature of many neurodegenerative diseases.

[1]  J. Olszewski,et al.  Progressive Supranuclear Palsy: A Heterogeneous Degeneration Involving the Brain Stem, Basal Ganglia and Cerebellum With Vertical Gaze and Pseudobulbar Palsy, Nuchal Dystonia and Dementia , 1964 .

[2]  Sid Gilman,et al.  Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography , 1988, Annals of neurology.

[3]  D. Salmon,et al.  Physical basis of cognitive alterations in alzheimer's disease: Synapse loss is the major correlate of cognitive impairment , 1991, Annals of neurology.

[4]  I. Ferrer,et al.  Dementia of frontal lobe type and motor neuron disease. A Golgi study of the frontal cortex. , 1991, Journal of neurology, neurosurgery, and psychiatry.

[5]  J R Moeller,et al.  The metabolic landscape of cortico-basal ganglionic degeneration: regional asymmetries studied with positron emission tomography. , 1991, Journal of neurology, neurosurgery, and psychiatry.

[6]  Y Agid,et al.  Corticobasal degeneration: Decreased and asymmetrical glucose consumption as studied with PET , 1992, Movement disorders : official journal of the Movement Disorder Society.

[7]  M. Linial,et al.  Brain contains two forms of synaptic vesicle protein 2. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Scheller,et al.  Differential expression of synaptic vesicle protein 2 (SV2) isoforms , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  M. Hallett,et al.  Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) , 1996, Neurology.

[10]  A. Evans,et al.  Correction for partial volume effects in PET: principle and validation. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[11]  S. Gilman,et al.  PET measures of benzodiazepine receptors in progressive supranuclear palsy , 2000, Neurology.

[12]  E. Bigio,et al.  Cortical Synapse Loss in Progressive Supranuclear Palsy , 2001, Journal of neuropathology and experimental neurology.

[13]  E. Bigio,et al.  Contribution of asymmetric synapse loss to lateralizing clinical deficits in frontotemporal dementias. , 2001, Archives of neurology.

[14]  Richard E Carson,et al.  Noise Reduction in the Simplified Reference Tissue Model for Neuroreceptor Functional Imaging , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  W. K. Cullen,et al.  Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo , 2002, Nature.

[16]  P. Lantos,et al.  Office of Rare Diseases Neuropathologic Criteria for Corticobasal Degeneration , 2002, Journal of neuropathology and experimental neurology.

[17]  B. Choe,et al.  Different metabolic patterns analysis of Parkinsonism on the 18F-FDG PET. , 2004, European journal of radiology.

[18]  J. Trojanowski,et al.  Unexpected abundance of pathological tau in progressive supranuclear palsy white matter , 2006, Annals of neurology.

[19]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[20]  C. Jack,et al.  Voxel-based morphometry in autopsy proven PSP and CBD , 2008, Neurobiology of Aging.

[21]  David R Williams,et al.  Progressive supranuclear palsy: clinicopathological concepts and diagnostic challenges , 2009, The Lancet Neurology.

[22]  Daniel Irimia,et al.  Differential effect of three‐repeat and four‐repeat tau on mitochondrial axonal transport , 2009, Journal of neurochemistry.

[23]  J. Luebke,et al.  Structural and functional changes in tau mutant mice neurons are not linked to the presence of NFTs , 2010, Experimental Neurology.

[24]  K. Ashe,et al.  Tau Mislocalization to Dendritic Spines Mediates Synaptic Dysfunction Independently of Neurodegeneration , 2010, Neuron.

[25]  Dennis W. Dickson,et al.  Neuropathology of Frontotemporal Lobar Degeneration-Tau (FTLD-Tau) , 2011, Journal of Molecular Neuroscience.

[26]  Mark Hallett,et al.  Criteria for the diagnosis of corticobasal degeneration , 2013, Neurology.

[27]  J. Hodges,et al.  Cognition in corticobasal syndrome and progressive supranuclear palsy: A review , 2014, Movement disorders : official journal of the Movement Disorder Society.

[28]  Bradley T. Hyman,et al.  The Intersection of Amyloid Beta and Tau at Synapses in Alzheimer’s Disease , 2014, Neuron.

[29]  James B. Rowe,et al.  The medial frontal-prefrontal network for altered awareness and control of action in corticobasal syndrome , 2013, Brain : a journal of neurology.

[30]  R. Carlyon,et al.  The binaural masking level difference: cortical correlates persist despite severe brain stem atrophy in progressive supranuclear palsy , 2014, Journal of neurophysiology.

[31]  Ninon Burgos,et al.  Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies , 2014, IEEE Transactions on Medical Imaging.

[32]  J. Hodges,et al.  Edinburgh Research Explorer Validation of the New Consensus Criteria for the Diagnosis of Corticobasal Degeneration , 2022 .

[33]  John L Robinson,et al.  Perforant path synaptic loss correlates with cognitive impairment and Alzheimer's disease in the oldest-old. , 2014, Brain : a journal of neurology.

[34]  Robert A. Koeppe,et al.  The Centiloid Project: Standardizing quantitative amyloid plaque estimation by PET , 2015, Alzheimer's & Dementia.

[35]  E. Stern,et al.  Pathological Tau Disrupts Ongoing Network Activity , 2015, Neuron.

[36]  Ninon Burgos,et al.  NiftyWeb: web based platform for image processing on the cloud , 2016 .

[37]  D. Spencer,et al.  Imaging synaptic density in the living human brain , 2016, Science Translational Medicine.

[38]  J. Rowe,et al.  Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes , 2016, Neurology.

[39]  W. Löscher,et al.  Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond , 2016, CNS Drugs.

[40]  E. Mandelkow,et al.  Extracellular low-n oligomers of tau cause selective synaptotoxicity without affecting cell viability , 2017, Alzheimer's & Dementia.

[41]  Murray Grossman,et al.  Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria , 2017, Movement disorders : official journal of the Movement Disorder Society.

[42]  David T. Jones,et al.  Defining imaging biomarker cut points for brain aging and Alzheimer's disease , 2017, Alzheimer's & Dementia.

[43]  P. Reddy,et al.  Hippocampal phosphorylated tau induced cognitive decline, dendritic spine loss and mitochondrial abnormalities in a mouse model of Alzheimer’s disease , 2018, Human molecular genetics.

[44]  R. Henson,et al.  Neurophysiological signatures of Alzheimer’s disease and frontotemporal lobar degeneration: pathology versus phenotype , 2018, Brain : a journal of neurology.

[45]  Richard E Carson,et al.  Assessing Synaptic Density in Alzheimer Disease With Synaptic Vesicle Glycoprotein 2A Positron Emission Tomographic Imaging , 2018, JAMA neurology.

[46]  L. Rajendran,et al.  Microglia-Mediated Synapse Loss in Alzheimer's Disease , 2018, The Journal of Neuroscience.

[47]  Luca Passamonti,et al.  Tau burden and the functional connectome in Alzheimer’s disease and progressive supranuclear palsy , 2018, Brain : a journal of neurology.

[48]  Koen Van Laere,et al.  Quantifying SV2A density and drug occupancy in the human brain using [11C]UCB-J PET imaging and subcortical white matter as reference tissue , 2018, European Journal of Nuclear Medicine and Molecular Imaging.

[49]  N. Cairns,et al.  Integrative system biology analyses of CRISPR-edited iPSC-derived neurons and human brains reveal deficiencies of presynaptic signaling in FTLD and PSP , 2018, Translational Psychiatry.

[50]  Yiyun Huang,et al.  Kinetic evaluation and test–retest reproducibility of [11C]UCB-J, a novel radioligand for positron emission tomography imaging of synaptic vesicle glycoprotein 2A in humans , 2017, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[51]  L. Golbe,et al.  Is the Latency from Progressive Supranuclear Palsy Onset to Diagnosis Improving? , 2018, Movement disorders clinical practice.

[52]  J. Klein,et al.  Diagnosis Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Syndrome , 2019, JAMA neurology.

[53]  Yiyun Huang,et al.  In Vivo Synaptic Density Imaging with 11C-UCB-J Detects Treatment Effects of Saracatinib in a Mouse Model of Alzheimer Disease , 2019, The Journal of Nuclear Medicine.

[54]  Young T. Hong,et al.  Brain MRI Coil Attenuation Map Processing for the GE SIGNA PET/MR: Impact on PET Image Quantification and Uniformity , 2019, 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).

[55]  Nabeel Nabulsi,et al.  PET imaging of synaptic density: A new tool for investigation of neuropsychiatric diseases , 2019, Neuroscience Letters.

[56]  Tanya Simuni,et al.  Neurite orientation dispersion and density imaging (NODDI) and free‐water imaging in Parkinsonism , 2019, Human brain mapping.

[57]  Richard E Carson,et al.  Assessment of a white matter reference region for 11C-UCB-J PET quantification , 2020, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[58]  W. Meissner,et al.  Four-repeat tauopathies , 2019, Progress in Neurobiology.

[59]  J. Passchier,et al.  Characterization of 3 PET Tracers for Quantification of Mitochondrial and Synaptic Function in Healthy Human Brain: 18F-BCPP-EF, 11C-SA-4503, and 11C-UCB-J , 2020, The Journal of Nuclear Medicine.

[60]  Dustin Scheinost,et al.  Lower synaptic density is associated with depression severity and network alterations , 2019, Nature Communications.

[61]  D. Matuskey,et al.  Positron emission tomography imaging of the γ-aminobutyric acid system , 2019, Neuroscience Letters.

[62]  J. Rowe,et al.  Neuropathological validation of the MDS-PSP criteria with PSP and other frontotemporal lobar degeneration , 2019, bioRxiv.

[63]  Joseph J Russell,et al.  Automated radiosynthesis of [11C]UCB‐J for imaging synaptic density by positron emission tomography , 2020, Journal of labelled compounds & radiopharmaceuticals.

[64]  Joseph J Russell,et al.  Automated radiosynthesis of [C]UCB-J for imaging synaptic density by positron emission tomography , 2020 .

[65]  John L. Robinson,et al.  Distribution patterns of tau pathology in progressive supranuclear palsy , 2020, Acta Neuropathologica.