Some new residual-based a posteriori error estimators for the mortar finite element methods

In this paper, we propose some new residual-based a posteriori error estimators for the mortar finite element discretization of the second order elliptic equations with discontinuous coefficients. Reliability and efficiency of the estimators are given. Our analysis does not require any saturation assumptions and the mesh restrictions on the interface which are often needed in the literature. Numerical experiments are presented to confirm our theoretical analysis.

[1]  Carsten Carstensen,et al.  A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.

[2]  Frédéric Hecht,et al.  Mortar finite element discretization for the flow in a nonhomogeneous porous medium , 2007 .

[3]  Zhang,et al.  A POSTERIORI ESTIMATOR OF NONCONFORMING FINITE ELEMENT METHOD FOR FOURTH ORDER ELLIPTIC PERTURBATION PROBLEMS , 2008 .

[4]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..

[5]  Marc Garbey,et al.  Asymptotic and numerical methods for partial differential equations with critical parameters , 1993 .

[6]  Jun Hu,et al.  A unifying theory of a posteriori error control for nonconforming finite element methods , 2007, Numerische Mathematik.

[7]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[8]  Xuejun Xu,et al.  Multigrid for the mortar element method for P1 nonconforming element , 2001, Numerische Mathematik.

[9]  Rüdiger Verfürth,et al.  Adaptive finite element methods for elliptic equations with non-smooth coefficients , 2000, Numerische Mathematik.

[10]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[11]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[12]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[13]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[14]  Gerd Kunert,et al.  A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .

[15]  Mark Ainsworth,et al.  A Posteriori Error Estimation for Lowest Order Raviart-Thomas Mixed Finite Elements , 2007, SIAM J. Sci. Comput..

[16]  Ronald H. W. Hoppe,et al.  Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems , 2010, Numerische Mathematik.

[17]  Mary F. Wheeler,et al.  A Posteriori Error Estimates for the Mortar Mixed Finite Element Method , 2005, SIAM J. Numer. Anal..

[18]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[19]  Leszek Marcinkowski The Mortar Element Method with Locally Nonconforming Elements , 1999 .

[20]  Mark Ainsworth,et al.  Robust A Posteriori Error Estimation for Nonconforming Finite Element Approximation , 2004, SIAM J. Numer. Anal..

[21]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[22]  Shun Zhang,et al.  Recovery-Based Error Estimators for Interface Problems: Mixed and Nonconforming Finite Elements , 2010, SIAM J. Numer. Anal..

[23]  Barbara I. Wohlmuth An a Posteriori Error Estimator for Two-Body Contact Problems on Non-Matching Meshes , 2007, J. Sci. Comput..

[24]  Shun Zhang,et al.  Recovery-Based Error Estimator for Interface Problems: Conforming Linear Elements , 2009, SIAM J. Numer. Anal..

[25]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[26]  Frédéric Hecht,et al.  Error indicators for the mortar finite element discretization of the Laplace equation , 2002, Math. Comput..

[27]  Carsten Carstensen,et al.  Unified framework for an a posteriori error analysis of non-standard finite element approximations of H(curl)-elliptic problems , 2009, 2009 International Conference on Electromagnetics in Advanced Applications.

[28]  I. Babuska,et al.  ON THE ANGLE CONDITION IN THE FINITE ELEMENT METHOD , 1976 .

[29]  Jun Hu,et al.  Framework for the A Posteriori Error Analysis of Nonconforming Finite Elements , 2007, SIAM J. Numer. Anal..

[30]  Barbara I. Wohlmuth,et al.  A residual based error estimator for mortar finite element discretizations , 1999, Numerische Mathematik.

[31]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[32]  Barbara Wohlmuth,et al.  Hierarchical A Posteriori Error Estimators for Mortar Finite Element Methods with Lagrange Multipliers , 1999 .

[33]  Jun Hu,et al.  A new a posteriori error estimate for the Morley element , 2009, Numerische Mathematik.

[34]  Zhiming Chen,et al.  On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients , 2002, SIAM J. Sci. Comput..