Time-dependent simulations of multiwavelength variability of the blazar Mrk 421 with a Monte Carlo multizone code

We present a new time-dependent multizone radiative transfer code and its first application to study the synchrotron self-Compton (SSC) emission of the blazar Mrk 421. The code couples Fokker–Planck and Monte Carlo methods in a two-dimensional (cylindrical) geometry. For the first time all the light traveltime effects (LTTE) are fully considered, along with a proper, full, self-consistent treatment of Compton cooling, which depends on them. We study a set of simple scenarios where the variability is produced by injection of relativistic electrons as a ‘shock front’ crosses the emission region. We consider emission from two components, with the second component either being pre-existing and cospatial and participating in the evolution of the active region (background), or being spatially separated and independent, only diluting the observed variability (foreground). Temporal and spectral results of the simulation are compared to the multiwavelength observations of Mrk 421 in 2001 March. We find parameters that can adequately fit the observed SEDs and multiwavelength light curves and correlations. There remain, however, a few open issues, most notably (i) the simulated data show a systematic soft intraband X-ray lag, (ii) the quadratic correlation between the TeV γ -ray and X-ray flux during the decay of the flare has not been reproduced. These features turned out to be among those more affected by the spatial extent and geometry of the source, i.e. LTTE. The difficulty of producing hard X-ray lags is exacerbated by a bias towards soft lags caused by the combination of energy-dependent radiative cooling time-scales and LTTE. About the second emission component, our results strongly favour the scenario where it is cospatial and it participates in the flare evolution, suggesting that different phases of activity may occur in the same region. The cases presented in this paper represent only an initial study, and despite their limited scope they make a strong case for the need of true time-dependent and multizone modelling.

[1]  G. Ghisellini,et al.  General physical properties of bright Fermi blazars , 2009, 0909.0932.

[2]  P. Madau,et al.  ON THE ORIGIN OF THE GAMMA -RAY EMISSION IN BLAZARS , 1996 .

[3]  Beaming and the Intrinsic Properties of Extragalactic Radio Jets , 2006, astro-ph/0611642.

[4]  C. Dermer On Spectral and Temporal Variability in Blazars and Gamma-Ray Bursts , 1998, astro-ph/9805289.

[5]  A. Marscher,et al.  IMPLICATIONS OF THE VERY HIGH ENERGY GAMMA-RAY DETECTION OF THE QUASAR 3C279 , 2009 .

[6]  P. Giommi,et al.  Extreme Synchrotron BL Lac Objects Stretching the Blazar sequence , 2001 .

[7]  Noriko Y. Yamasaki,et al.  ASCA Observation of an X-Ray/TeV Flare from the BL Lacertae Object Markarian 421 , 1996 .

[8]  Martin J. Rees,et al.  Comptonization of Diffuse Ambient Radiation by a Relativistic Jet: The Source of Gamma Rays from Blazars? , 1994 .

[9]  L. Lucy,et al.  Multiline Transfer and the Dynamics of Stellar Winds , 1985 .

[10]  A. Comastri,et al.  A theoretical unifying scheme for gamma-ray bright blazars , 1998, astro-ph/9807317.

[11]  A multiwavelength view of the TeV blazar markarian 421: Correlated variability, flaring, and spectral evolution , 2005, astro-ph/0505325.

[12]  L. Drury,et al.  An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas , 1983 .

[13]  M. Sikora,et al.  Modeling the Production of Flares in Gamma-Ray Quasars , 2001, astro-ph/0102091.

[14]  Milano,et al.  Constraints on the Physical Parameters of TeV Blazars , 1998, astro-ph/9809051.

[15]  R. Scalzo,et al.  CORRELATED VARIABILITY IN THE BLAZAR 3C 454.3 , 2008, 0812.4582.

[16]  T. Gaisser Cosmic rays and particle physics , 2016 .

[17]  Berrie Giebels,et al.  Unveiling the X-ray/TeV engine in Mkn 421 , 2006 .

[18]  M. Sikora,et al.  CONSTRAINING EMISSION MODELS OF LUMINOUS BLAZAR SOURCES , 2009, 0904.1414.

[19]  E. Phinney,et al.  Pair-induced spectral changes and variability in compact X-ray sources , 1986 .

[20]  F. Rieger,et al.  Shear Acceleration in Relativistic Astrophysical Jets , 2004, astro-ph/0410269.

[21]  R. Silberberg,et al.  Towards the Millennium in Astrophysics; Problems and Prospects , 1999, Towards The Millennium in Astrophysics.

[22]  T. Weekes,et al.  Multiwavelength Observations of the Blazar Markarian 421 in 2002 December and 2003 January , 2005, astro-ph/0512628.

[23]  R. Silberberg,et al.  International School of Cosmic Ray Astrophysics 10th course, towards the millennium in astrophysics : problems and prospects , Erice, Italy, 16-23 June 1996 , 1998 .

[24]  M. Ostrowski,et al.  Radiation from the Relativistic Jet: A Role of the Shear Boundary Layer , 2002, astro-ph/0203040.

[25]  Correlated Intense X-Ray and TeV Activity of Markarian 501 in 1998 June , 2000, astro-ph/0002215.

[26]  M. Teshima,et al.  SUZAKU WIDE BAND ANALYSIS OF THE X-RAY VARIABILITY OF TeV BLAZAR Mrk 421 IN 2006 , 2009, 0905.0698.

[27]  G. Rybicki,et al.  Radiative processes in astrophysics , 1979 .

[28]  G. Ghisellini,et al.  Correlation between the TeV and X-ray emission in high-energy peaked BL Lac objects , 2004, astro-ph/0412405.

[29]  The blazar GB 1428+4217: a warm absorber at z=4.72? , 2001, astro-ph/0101288.

[30]  M. Böttcher Modeling the emission processes in blazars , 2006, astro-ph/0608713.

[31]  G. Ghisellini,et al.  A jet model for the gamma-ray emitting blazar 3C 279 , 1992 .

[32]  R. Blandford,et al.  Reaction rates and energy distributions for elementary processes in relativistic pair plasmas , 1990, Monthly Notices of the Royal Astronomical Society.

[33]  Italy Universita dell'Insubria,et al.  X-Ray Emission of Markarian 421: New Clues from Its Spectral Evolution. I. Temporal Analysis , 2000, astro-ph/0005066.

[34]  Paul S. Smith,et al.  PROBING THE INNER JET OF THE QUASAR PKS 1510−089 WITH MULTI-WAVEBAND MONITORING DURING STRONG GAMMA-RAY ACTIVITY , 2010, 1001.2574.

[35]  P. Graff,et al.  A Multizone Model for Simulating the High-Energy Variability of TeV Blazars , 2008, 0808.2135.

[36]  R. Protheroe Factors Determining Variability Time in Active Galactic Nucleus Jets , 2002, Publications of the Astronomical Society of Australia.

[37]  G. Fossati,et al.  A unifying view of the spectral energy distributions of blazars , 1998 .

[38]  I. McHardy,et al.  Synchrotron Self-Compton Model for Rapid Nonthermal Flares in Blazars with Frequency-dependent Time Lags , 2004, astro-ph/0406235.

[39]  A. Marscher,et al.  External Compton Radiation from Rapid Nonthermal Flares in Blazars , 2005, astro-ph/0504639.

[40]  D. Jackson,et al.  Two-dimensional Monte Carlo/Fokker-Planck Simulations of Flares in Accretion Disk Corona Models , 2003 .

[41]  C. Megan Urry,et al.  VARIABILITY OF ACTIVE GALACTIC NUCLEI , 1997 .

[42]  Multiwavelength Observations of Strong Flares From the TeV-Blazar 1ES 1959+650 , 2003, astro-ph/0310158.

[43]  University College Dublin,et al.  Multiwavelength Observations of Markarian 421 in 2001 March: An Unprecedented View on the X-Ray/TeV Correlated Variability , 2007, 0710.4138.

[44]  J. Chiang,et al.  X-Ray Spectral Variability Signatures of Flares in BL Lacertae Objects , 2002, astro-ph/0208238.

[45]  G. Ghisellini,et al.  The Synchrotron Boiler , 1988 .

[46]  C. Boisson,et al.  Modelling rapid TeV variability of PKS 2155−304 , 2008, 0807.4533.

[47]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[48]  M. Sikora,et al.  A large-particle Monte Carlo code for simulating non-linear high-energy processes near compact objects , 1995 .

[49]  E. Palazzi,et al.  Theoretical Implications from the Spectral Evolution of Markarian 501 Observed with BeppoSAX , 2001 .

[50]  Simultaneous X-ray and infrared variability in the quasar 3C273 - II. Confirmation of the correlation and X-ray lag , 2006, astro-ph/0612635.

[51]  Paolo S. Coppi,et al.  Time-dependent models of magnetized pair plasmas , 1992 .

[52]  Marco Chiaberge,et al.  Rapid variability in the synchrotron self Compton model for blazars , 1998, astro-ph/9810263.

[53]  A. Cavaliere,et al.  Signatures of synchrotron emission and of electron acceleration in the X-ray spectra of Mrk 421 , 2007, astro-ph/0702151.

[54]  W. Bednarek,et al.  The physical parameters of Markarian 501 during flaring activity , 1999, astro-ph/9902050.

[55]  F. Rieger,et al.  A Microscopic Analysis of Shear Acceleration , 2006, astro-ph/0610187.

[56]  Hui Li,et al.  Temporal and Spectral Variabilities of High-Energy Emission from Blazars Using Synchrotron Self-Compton Models , 2000, astro-ph/0002134.

[57]  M. Rees,et al.  Anisotropic induced Compton scattering - Constraints on models of active galactic nuclei , 1993 .

[58]  H. Krawczynski,et al.  Complex Spectral Variability from Intensive Multiwavelength Monitoring of Markarian 421 in 1998 , 2000, astro-ph/0008505.

[59]  T. Takahashi,et al.  Variability Pattern and the Spectral Evolution of the BL Lacertae Object PKS 2155–304 , 1999 .

[60]  Italy Universita dell'Insubria,et al.  X-Ray Emission of Markarian 421: New Clues from Its Spectral Evolution. II. Spectral Analysis and Physical Constraints , 2000, astro-ph/0005067.

[61]  I. Pauliny-Toth,et al.  Compact Radio Sources , 1981 .

[62]  J. Chiang,et al.  EARLY FERMI GAMMA-RAY SPACE TELESCOPE OBSERVATIONS OF THE QUASAR 3C 454.3 , 2009, 0904.4280.

[63]  G. Ghisellini,et al.  Stochastic particle acceleration and synchrotron self-Compton radiation in TeV blazars. , 2006, astro-ph/0603362.

[64]  Felix Aharonian,et al.  Time-dependent modelling of the Markarian 501 X-ray and TeV gamma-ray data taken during 1997 March and April , 2002 .

[65]  M. Pohl,et al.  Synchrotron Self-Comptonization in a Relativistic Collision Front Model , 2005 .

[66]  H. J. Voelk High energy gamma-ray astronomy , 2004 .

[67]  J. Kataoka,et al.  Evolution of the Synchrotron Spectrum in Markarian 421 during the 1998 Campaign , 2003, astro-ph/0310592.

[68]  M. Punch,et al.  Detection of TeV photons from the active galaxy Markarian 421 , 1992, Nature.

[69]  A. Levinson High-Energy Aspects of Astrophysical Jets , 2005, astro-ph/0611521.

[70]  Tagliaferri,et al.  Simultaneous X-Ray and TeV Observations of a Rapid Flare from Markarian 421 , 1999, The Astrophysical journal.

[71]  R Edelson,et al.  The Discrete Correlation Function: a New Method for Analyzing Unevenly Sampled Variability Data , 1988 .

[72]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[73]  W. M. Howard,et al.  Inverse Comptonization by one-dimensional relativistic electrons , 1987 .

[74]  Markus Böttcher,et al.  Monte Carlo Simulations of Thermal-Nonthermal Radiation from a Neutron Star Magnetospheric Accretion Shell , 2000, astro-ph/0010268.

[75]  P. Giommi,et al.  BL Lacertae: Complex spectral variability and rapid synchrotron flare detected with BeppoSAX , 2002, astro-ph/0201307.

[76]  et al,et al.  Accepted for Publication in the Astrophysical Journal Simultaneous X-Ray and TeV Gamma-Ray Observations of the TeV Blazar , 2001 .

[77]  Roger D. Blandford,et al.  Particle acceleration at astrophysical shocks: A theory of cosmic ray origin , 1987 .