On architectures of circuits implemented in simulated Belousov-Zhabotinsky droplets

When lipid vesicles filled with Belousov-Zhabotinsky (BZ) excitable chemical medium are packed in tight assembles, waves of excitation may travel between the vesicles. When several waves meet in a vesicle some fragments may deflect, others can annihilate or continue their travel undisturbed. By interpreting waves as Boolean values we can construct logical gates and assemble them in large circuits. In numerical modelling we show two architectures of one-bit half-adders implemented in BZ-vesicles.

[1]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[2]  Jerzy Gorecki,et al.  Logical Functions of a Cross Junction of Excitable Chemical Media , 2001 .

[3]  F. W. Schneider,et al.  LOGICAL GATES USING A NONLINEAR CHEMICAL REACTION , 1994 .

[4]  Andrew Adamatzky,et al.  Experimental validation of binary collisions between wave fragments in the photosensitive Belousov–Zhabotinsky reaction , 2009 .

[5]  Andrew Adamatzky,et al.  Collision-Based Computing , 2002, Springer London.

[6]  Andrew Adamatzky,et al.  On computing in fine-grained compartmentalised Belousov-Zhabotinsky medium , 2010, 1006.1900.

[7]  Andrew Adamatzky,et al.  Binary collisions between wave-fragments in a sub-excitable Belousov–Zhabotinsky medium , 2007 .

[8]  Andrew Adamatzky,et al.  Three-valued logic gates in reaction–diffusion excitable media , 2005 .

[9]  John Ross,et al.  Implementation of logic functions and computations by chemical kinetics , 1995 .

[10]  Valentina Beato,et al.  Pulse propagation in a model for the photosensitive Belousov-Zhabotinsky reaction with external noise , 2003, SPIE International Symposium on Fluctuations and Noise.

[11]  Andrew Adamatzky,et al.  Collision-based computing in Belousov–Zhabotinsky medium , 2004 .

[12]  Andrew Adamatzky,et al.  Logical and arithmetic circuits in Belousov-Zhabotinsky encapsulated disks. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Jerzy Gorecki,et al.  Information processing with structured excitable medium , 2009, Natural Computing.

[14]  Kenneth Showalter,et al.  Logic gates in excitable media , 1995 .

[15]  Tetsuya Asai,et al.  Reaction-diffusion computers , 2005 .

[16]  Jan Szymanski,et al.  Droplets with Information Processing Ability , 2011, Int. J. Unconv. Comput..

[17]  Andrew Adamatzky,et al.  Implementation of glider guns in the light-sensitive Belousov-Zhabotinsky medium. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Klaus-Peter Zauner,et al.  Artificial Wet Neuronal Networks from Compartmentalised Excitable Chemical Media , 2011, ERCIM News.

[19]  Jerzy Gorecki,et al.  Basic Information Processing Operations with Pulses of Excitation in a Reaction-Diffusion System , 2009, Int. J. Unconv. Comput..

[20]  Kenneth Showalter,et al.  Signal transmission in chemical systems: propagation of chemical waves through capillary tubes , 1994 .

[21]  Jan Szymanski,et al.  Realistic parameters for simple models of the Belousov-Zhabotinsky reaction. , 2011, The journal of physical chemistry. A.

[22]  Derek Abbott,et al.  Noise in Complex Systems and Stochastic Dynamics , 2003 .

[23]  Andrew Adamatzky,et al.  Computational modalities of Belousov-Zhabotinsky encapsulated vesicles , 2010, Nano Commun. Networks.