Single qubit manipulation in a microfabricated surface electrode ion trap

We trap individual 171Yb+ ions in a surface trap microfabricated on a silicon substrate, and demonstrate a complete set of high fidelity single qubit operations for the hyperfine qubit. Trapping times exceeding 20 min without laser cooling, and heating rates as low as 0.8 quanta ms−1, indicate stable trapping conditions in these microtraps. A coherence time of more than 1 s, high fidelity qubit state detection and single qubit rotations are demonstrated. The observation of low heating rates and demonstration of high quality single qubit gates at room temperature are critical steps toward scalable quantum information processing in microfabricated surface traps.

[1]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[2]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[3]  Robert M. Jopson,et al.  System design for large-scale ion trap quantum information processor , 2005, Quantum Inf. Comput..

[4]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[5]  D. Moehring,et al.  Demonstration of a microfabricated surface electrode ion trap , 2010, 1008.0990.

[6]  C. Monroe,et al.  Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects , 2012, 1208.0391.

[7]  J. Britton,et al.  Toward scalable ion traps for quantum information processing , 2009, 0909.2464.

[8]  W. W. Macalpine,et al.  Coaxial Resonators with Helical Inner Conductor , 1959, Proceedings of the IRE.

[9]  D. Stick,et al.  Design, fabrication and experimental demonstration of junction surface ion traps , 2011 .

[10]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[11]  K. Brown,et al.  Reduction of anomalous heating in an in-situ-cleaned ion trap , 2011, 1112.5419.

[12]  Peter Maunz,et al.  High speed, high fidelity detection of an atomic hyperfine qubit. , 2013, Optics letters.

[13]  Lu-Ming Duan,et al.  Scalable trapped ion quantum computation with a probabilistic ion-photon mapping , 2004, Quantum Inf. Comput..

[14]  Boris B. Blinov,et al.  Zero-point cooling and low heating of trapped {sup 111}Cd{sup +} ions , 2004, quant-ph/0404142.

[15]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[16]  D. M. Lucas,et al.  Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect , 2009, 0909.3272.

[17]  Frederic T. Chong,et al.  Building quantum wires: the long and the short of it , 2003, 30th Annual International Symposium on Computer Architecture, 2003. Proceedings..

[18]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[19]  P. C. Haljan,et al.  Erratum: Zero-point cooling and low heating of trapped {sup 111}Cd{sup +} ions [Phys. Rev. A 70, 043408 (2004)] , 2006 .

[20]  Curtis Volin,et al.  Demonstration of integrated microscale optics in surface-electrode ion traps , 2011, 1105.4905.

[21]  W. Neuhauser,et al.  Error-resistant Single Qubit Gates with Trapped Ions , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[22]  Isaac L. Chuang,et al.  Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap , 2009, 0912.4892.

[23]  Isaac L. Chuang,et al.  Demonstration of a scalable, multiplexed ion trap for quantum information processing , 2009, Quantum Inf. Comput..

[24]  D. M. Lucas,et al.  Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap , 2011, 1105.4864.

[25]  D. M. Lucas,et al.  A microfabricated ion trap with integrated microwave circuitry , 2012, 1210.3272.

[26]  N. Timoney,et al.  Error-resistant Single Qubit Gates with Trapped Ions , 2007 .

[27]  Individual Addressing of Trapped Ions and Coupling of Motional and Spin States Using rf Radiation , 2008 .

[28]  N Davidson,et al.  Echo spectroscopy and quantum stability of trapped atoms. , 2003, Physical review letters.

[29]  D M Lucas,et al.  Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning , 2011, 1110.1486.

[30]  S. Olmschenk,et al.  Manipulation and detection of a trapped Yb+ hyperfine qubit , 2007, 0708.0657.

[31]  Curtis Volin,et al.  Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation , 2012, 1204.4147.

[32]  C Langer,et al.  Long-lived qubit memory using atomic ions. , 2005, Physical review letters.

[33]  K. Brown,et al.  100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. , 2012, Physical review letters.

[34]  Andrew M. Steane,et al.  How to build a 300 bit, 1 Giga-operation quantum computer , 2004, Quantum Inf. Comput..

[35]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[36]  W K Hensinger,et al.  Simple manipulation of a microwave dressed-state ion qubit. , 2013, Physical review letters.

[37]  Kenneth R. Brown,et al.  Loading and characterization of a printed-circuit-board atomic ion trap , 2006, quant-ph/0603142.

[38]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[39]  K. R. Brown,et al.  Microwave quantum logic gates for trapped ions , 2011, Nature.

[40]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[41]  Wineland,et al.  Laser cooling to the zero-point energy of motion. , 1989, Physical review letters.

[42]  F. Schmidt-Kaler,et al.  Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer , 2003, Nature.

[43]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[44]  T. Monz,et al.  Realization of the quantum Toffoli gate with trapped ions. , 2008, Physical review letters.

[45]  J Mizrahi,et al.  Entanglement of atomic qubits using an optical frequency comb. , 2010, Physical review letters.

[46]  Y. Colombe,et al.  Efficient fiber optic detection of trapped ion fluorescence. , 2010, Physical review letters.

[47]  David J. Wineland,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[48]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[49]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[50]  M. G. Boshier,et al.  Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems , 2002 .

[51]  S. Urabe,et al.  Detection of parametric resonance of trapped ions for micromotion compensation , 2011 .

[52]  King,et al.  Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. , 1995, Physical review letters.

[53]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.