SnCQA: A hardware-efficient equivariant quantum convolutional circuit architecture

We propose SnCQA, a set of hardware-efficient variational circuits of equivariant quantum convolutional circuits respective to permutation symmetries and spatial lattice symmetries with the number of qubits n. By exploiting permutation symmetries of the system, such as lattice Hamiltonians common to many quantum many-body and quantum chemistry problems, Our quantum neural networks are suitable for solving machine learning problems where permutation symmetries are present, which could lead to significant savings of computational costs. Aside from its theoretical novelty, we find our simulations perform well in practical instances of learning ground states in quantum computational chemistry, where we could achieve comparable performances to traditional methods with few tens of parameters. Compared to other traditional variational quantum circuits, such as the pure hardware-efficient ansatz (pHEA), we show that SnCQA is more scalable, accurate, and noise resilient (with 20× better performance on 3 × 4 square lattice and 200% - 1000% resource savings in various lattice sizes and key criterions such as the number of layers, parameters, and times to converge in our cases), suggesting a potentially favorable experiment on near-time quantum devices.

[1]  M. Cerezo,et al.  Theoretical guarantees for permutation-equivariant quantum neural networks , 2022, npj Quantum Information.

[2]  Patrick J. Coles,et al.  Theory for Equivariant Quantum Neural Networks , 2022, PRX Quantum.

[3]  Patrick J. Coles,et al.  Representation Theory for Geometric Quantum Machine Learning , 2022, ArXiv.

[4]  J. Eisert,et al.  Stochastic noise can be helpful for variational quantum algorithms , 2022, 2210.06723.

[5]  Ewin Tang Dequantizing algorithms to understand quantum advantage in machine learning , 2022, Nature Reviews Physics.

[6]  Tongliang Liu,et al.  Symmetric Pruning in Quantum Neural Networks , 2022, ICLR.

[7]  Patrick J. Coles,et al.  Building spatial symmetries into parameterized quantum circuits for faster training , 2022, Quantum Science and Technology.

[8]  R. Kondor,et al.  On the Super-exponential Quantum Speedup of Equivariant Quantum Machine Learning Algorithms with SU(d) Symmetry , 2022, ArXiv.

[9]  Zexi Lin,et al.  Laziness, Barren Plateau, and Noise in Machine Learning , 2022, ArXiv.

[10]  S. Gray,et al.  Quantum Kerr learning , 2022, Mach. Learn. Sci. Technol..

[11]  Johannes Jakob Meyer,et al.  Exploiting symmetry in variational quantum machine learning , 2022, PRX Quantum.

[12]  Thomas Bäck,et al.  Equivariant quantum circuits for learning on weighted graphs , 2022, npj Quantum Information.

[13]  A. Mezzacapo,et al.  Analytic Theory for the Dynamics of Wide Quantum Neural Networks. , 2022, Physical review letters.

[14]  Minh C. Tran,et al.  Digital Quantum Simulation of the Schwinger Model and Symmetry Protection with Trapped Ions , 2021, PRX Quantum.

[15]  R. Kondor,et al.  Speeding up Learning Quantum States through Group Equivariant Convolutional Quantum Ans{ä}tze , 2021, PRX Quantum.

[16]  Jarrod R. McClean,et al.  Revisiting dequantization and quantum advantage in learning tasks , 2021, ArXiv.

[17]  Jennifer R. Glick,et al.  Representation Learning via Quantum Neural Tangent Kernels , 2021, PRX Quantum.

[18]  Patrick J. Coles,et al.  Theory of overparametrization in quantum neural networks , 2021, Nature Computational Science.

[19]  Chang-Yu Hsieh,et al.  Variational Quantum-Neural Hybrid Eigensolver. , 2021, Physical review letters.

[20]  Patrick J. Coles,et al.  Cost function dependent barren plateaus in shallow parametrized quantum circuits , 2021, Nature Communications.

[21]  Minh C. Tran,et al.  Theory of Trotter Error with Commutator Scaling , 2021 .

[22]  Patrick J. Coles,et al.  Connecting ansatz expressibility to gradient magnitudes and barren plateaus , 2021, PRX Quantum.

[23]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[24]  M. Schmitt,et al.  Learning the ground state of a non-stoquastic quantum Hamiltonian in a rugged neural network landscape , 2020, SciPost Physics.

[25]  K. Temme,et al.  A rigorous and robust quantum speed-up in supervised machine learning , 2020, Nature Physics.

[26]  Maria Schuld,et al.  Effect of data encoding on the expressive power of variational quantum-machine-learning models , 2020, Physical Review A.

[27]  Yvette de Sereville,et al.  Exploring entanglement and optimization within the Hamiltonian Variational Ansatz , 2020, PRX Quantum.

[28]  Patrick J. Coles,et al.  Noise-induced barren plateaus in variational quantum algorithms , 2020, Nature Communications.

[29]  Minh C. Tran,et al.  Faster Digital Quantum Simulation by Symmetry Protection , 2020, PRX Quantum.

[30]  S. Yunoki,et al.  Symmetry-adapted variational quantum eigensolver , 2019, 1912.13146.

[31]  M. Katsnelson,et al.  Generalization properties of neural network approximations to frustrated magnet ground states , 2019, Nature Communications.

[32]  Brandon M. Anderson,et al.  Cormorant: Covariant Molecular Neural Networks , 2019, NeurIPS.

[33]  J. Biamonte Universal variational quantum computation , 2019, Physical Review A.

[34]  Soonwon Choi,et al.  Quantum convolutional neural networks , 2018, Nature Physics.

[35]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[36]  Ivano Tavernelli,et al.  Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions , 2018, Physical Review A.

[37]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[38]  M. Schuld,et al.  Circuit-centric quantum classifiers , 2018, Physical Review A.

[39]  Hari Krovi,et al.  An efficient high dimensional quantum Schur transform , 2018, Quantum.

[40]  Rupak Biswas,et al.  Quantum Machine Learning , 2018 .

[41]  Hartmut Neven,et al.  Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.

[42]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[43]  Frederick W. Strauch,et al.  A practical quantum algorithm for the Schur transform , 2017, Quantum Inf. Comput..

[44]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[45]  S. Lloyd,et al.  Quantum machine learning , 2016, Nature.

[46]  S. Coppersmith,et al.  A decoherence-free subspace in a charge quadrupole qubit , 2016, Nature Communications.

[47]  M. Welling,et al.  Group Equivariant Convolutional Networks , 2016, ICML.

[48]  J. Chalker,et al.  Deconfined Quantum Criticality, Scaling Violations, and Classical Loop Models , 2015, 1506.06798.

[49]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[50]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[51]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[53]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[54]  F. Verstraete,et al.  Tensor-product state approach to spin- 1 2 square J 1 − J 2 antiferromagnetic Heisenberg model: Evidence for deconfined quantum criticality , 2011, 1112.3331.

[55]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[56]  Stephen P. Jordan,et al.  Permutational quantum computing , 2009, Quantum Inf. Comput..

[57]  M. Lukin,et al.  Preparation of decoherence-free cluster states with optical superlattices , 2008, 0811.3049.

[58]  A. Harrow Applications of coherent classical communication and the schur transform to quantum information theory , 2005, quant-ph/0512255.

[59]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces and Subsystems , 2003, quant-ph/0301032.

[60]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[61]  J. Preskill Reliable quantum computers , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[62]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[63]  M. Clausen,et al.  Fast Fourier transforms for symmetric groups : theory and implementation , 1993 .

[64]  E. Lieb,et al.  Ordering Energy Levels of Interacting Spin Systems , 1962 .

[65]  A. Mezzacapo,et al.  An analytic theory for the dynamics of wide quantum neural networks , 2022, ArXiv.

[66]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[67]  B. Reichardt,et al.  Fault-Tolerant Quantum Computation , 2008, Encyclopedia of Algorithms.

[68]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.