Systems cell biology

Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

[1]  Ruedi Aebersold,et al.  Proteomics meets the scientific method , 2013, Nature Methods.

[2]  Benjamin L Turner,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S3 Table S1 References Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops , 2022 .

[3]  Vitali A. Likhoshvai,et al.  Generalized Hill Function Method for Modeling Molecular Processes , 2007, J. Bioinform. Comput. Biol..

[4]  J. Sweedler,et al.  Profiling metabolites and peptides in single cells , 2011, Nature Methods.

[5]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[6]  D. S. Broomhead,et al.  Pulsatile Stimulation Determines Timing and Specificity of NF-κB-Dependent Transcription , 2009, Science.

[7]  Gary D Bader,et al.  Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants , 2001, Science.

[8]  Robert P. St.Onge,et al.  The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes , 2008, Science.

[9]  Bradley L Ackermann,et al.  Current applications of liquid chromatography/mass spectrometry in pharmaceutical discovery after a decade of innovation. , 2008, Annual review of analytical chemistry.

[10]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[11]  R. Wilson,et al.  The Next-Generation Sequencing Revolution and Its Impact on Genomics , 2013, Cell.

[12]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[13]  R. Schekman,et al.  Peroxisomes are juxtaposed to strategic sites on mitochondria. , 2014, Molecular bioSystems.

[14]  S. Guan,et al.  Analysis of proteome dynamics in the mouse brain , 2010, Proceedings of the National Academy of Sciences.

[15]  R. Aebersold,et al.  Systematic measurement of transcription factor-DNA interactions by targeted mass spectrometry identifies candidate gene regulatory proteins , 2013, Proceedings of the National Academy of Sciences.

[16]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[17]  B. Chait,et al.  The Yeast Nuclear Pore Complex: Composition, Architecture, and Transport Mechanism , 2000 .

[18]  Nicholas T. Ingolia,et al.  Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins , 2013, Cell.

[19]  Jonathan M. Mudge,et al.  Functional transcriptomics in the post-ENCODE era , 2013, Genome research.

[20]  Alistair G. Rust,et al.  Role of the transcription factor C/EBPδ in a regulatory circuit that discriminates between transient and persistent Toll-like receptor 4-induced signals , 2009, Nature Immunology.

[21]  J. Buhmann,et al.  Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry , 2014, Nature Methods.

[22]  B. Short Cell biologists expand their networks , 2009, The Journal of cell biology.

[23]  I. Shmulevich,et al.  Genome-Wide Analysis of Effectors of Peroxisome Biogenesis , 2010, PloS one.

[24]  R. Beynon,et al.  Proteome Dynamics: Revisiting Turnover with a Global Perspective* , 2012, Molecular & Cellular Proteomics.

[25]  Paul Nurse,et al.  Life, logic and information , 2008, Nature.

[26]  Min Pan,et al.  An evolutionarily conserved RNase‐based mechanism for repression of transcriptional positive autoregulation , 2014, Molecular microbiology.

[27]  John Venn,et al.  The Logic Of Chance , 1888 .

[28]  D. Altshuler,et al.  A map of human genome variation from population-scale sequencing , 2010, Nature.

[29]  Josef D. Franke,et al.  Structure–function mapping of a heptameric module in the nuclear pore complex , 2012, The Journal of cell biology.

[30]  Sebastian Schmeier,et al.  Text mining for systems modeling. , 2011, Methods in molecular biology.

[31]  J. Ferrell,et al.  Interlinked Fast and Slow Positive Feedback Loops Drive Reliable Cell Decisions , 2005, Science.

[32]  Albert-László Barabási,et al.  Universality in network dynamics , 2013, Nature Physics.

[33]  David Fenyö,et al.  GINS motion reveals replication fork progression is remarkably uniform throughout the yeast genome , 2010, Molecular systems biology.

[34]  B. Pugh,et al.  Comprehensive Genome-wide Protein-DNA Interactions Detected at Single-Nucleotide Resolution , 2011, Cell.

[35]  A. Oudenaarden,et al.  Validation of noise models for single-cell transcriptomics , 2014, Nature Methods.

[36]  S. Ramsey,et al.  Asymmetric positive feedback loops reliably control biological responses , 2012, Molecular systems biology.

[37]  J. Ferrell,et al.  Modeling the Cell Cycle: Why Do Certain Circuits Oscillate? , 2011, Cell.

[38]  Gary D Bader,et al.  The Genetic Landscape of a Cell , 2010, Science.

[39]  Timothy Galitski,et al.  Inventories to insights , 2003, The Journal of cell biology.

[40]  Ruedi Aebersold,et al.  Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane , 2004, The Journal of cell biology.

[41]  Gary D. Bader,et al.  Mapping the Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures , 2014, Science.

[42]  Tony Pawson,et al.  Mapping differential interactomes by affinity purification coupled with data independent mass spectrometry acquisition , 2013, Nature Methods.

[43]  A. Tong,et al.  Synthetic genetic array analysis in Saccharomyces cerevisiae. , 2006, Methods in molecular biology.

[44]  Jacqueline Hayles,et al.  The Cell in an Era of Systems Biology , 2011, Cell.

[45]  A. J. Pennington,et al.  Surface properties of membrane vesicles prepared from muscle cells of Ascaris suum. , 1990, The Journal of parasitology.

[46]  M. Bennett,et al.  Metabolic gene regulation in a dynamically changing environment , 2008, Nature.

[47]  Alexander V Ratushny,et al.  Mathematical modeling of biomolecular network dynamics. , 2011, Methods in molecular biology.

[48]  B. Pugh,et al.  Genome-wide structure and organization of eukaryotic pre-initiation complexes , 2011, Nature.

[49]  Nevan J. Krogan,et al.  Quantitative Genetic Interactions Reveal Biological Modularity , 2010, Cell.

[50]  T. Ideker,et al.  A gene ontology inferred from molecular networks , 2012, Nature Biotechnology.

[51]  Amy K. Schmid,et al.  A Predictive Model for Transcriptional Control of Physiology in a Free Living Cell , 2007, Cell.

[52]  Alistair G. Rust,et al.  A FOXO3/IRF7 gene regulatory circuit limits inflammatory sequelae of antiviral responses , 2012, Nature.

[53]  C. E. Pearson,et al.  Table S2: Trans-factors and trinucleotide repeat instability Trans-factor , 2010 .

[54]  B. Franklin Pugh,et al.  SWR-C and INO80 Chromatin Remodelers Recognize Nucleosome-free Regions Near +1 Nucleosomes , 2013, Cell.

[55]  Jennifer J. Smith,et al.  Peroxisomes take shape , 2013, Nature Reviews Molecular Cell Biology.

[56]  D. Goodlett,et al.  Global Analysis of Condition-specific Subcellular Protein Distribution and Abundance* , 2013, Molecular & Cellular Proteomics.

[57]  Robert P. Davey,et al.  Population genomics of domestic and wild yeasts , 2008, Nature.

[58]  Mike Tyers,et al.  BioGRID: a general repository for interaction datasets , 2005, Nucleic Acids Res..

[59]  Daniel R. Caffrey,et al.  Structure-based maximal affinity model predicts small-molecule druggability , 2007, Nature Biotechnology.

[60]  Tariq Ahmad,et al.  Human SNP Links Differential Outcomes in Inflammatory and Infectious Disease to a FOXO3-Regulated Pathway , 2013, Cell.

[61]  L. Steinmetz,et al.  Alternative polyadenylation diversifies post‐transcriptional regulation by selective RNA–protein interactions , 2014, Molecular Systems Biology.

[62]  C. Myers,et al.  Genetic interaction networks: toward an understanding of heritability. , 2013, Annual review of genomics and human genetics.

[63]  V. Marx Targeted proteomics , 2013, Nature Methods.

[64]  Stephen W Holman,et al.  The use of selected reaction monitoring in quantitative proteomics. , 2012, Bioanalysis.

[65]  David Tollervey,et al.  A Transcriptome-wide Atlas of RNP Composition Reveals Diverse Classes of mRNAs and lncRNAs , 2013, Cell.

[66]  Sunil Kumar,et al.  Metallochaperones Regulate Intracellular Copper Levels , 2013, PLoS Comput. Biol..

[67]  A. Mogilner,et al.  Cell Polarity: Quantitative Modeling as a Tool in Cell Biology , 2012, Science.

[68]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[69]  Eric W. Deutsch,et al.  A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis , 2013, Nature.

[70]  C. de Duve Principles of tissue fractionation. , 1964, Journal of theoretical biology.

[71]  Sean R. Collins,et al.  Conservation and Rewiring of Functional Modules Revealed by an Epistasis Map in Fission Yeast , 2008, Science.

[72]  R. Kreisberg,et al.  Environment-responsive transcription factors bind subtelomeric elements and regulate gene silencing , 2011, Molecular systems biology.

[73]  K. Labib,et al.  A key role for the GINS complex at DNA replication forks. , 2007, Trends in cell biology.

[74]  Sean R. Collins,et al.  Exploration of the Function and Organization of the Yeast Early Secretory Pathway through an Epistatic Miniarray Profile , 2005, Cell.

[75]  Jung-Hsien Chiang,et al.  Molecular mechanisms of system responses to novel stimuli are predictable from public data , 2013, Nucleic acids research.

[76]  Vicent Pelechano,et al.  Genome-wide identification of transcript start and end sites by transcript isoform sequencing , 2014, Nature Protocols.

[77]  C. Matessi,et al.  On the evolution of altruism by kin selection. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[78]  John D. Aitchison,et al.  The Yeast Nuclear Pore Complex and Transport Through It , 2012, Genetics.

[79]  Stephen A Ramsey,et al.  Transcriptional Responses to Fatty Acid Are Coordinated by Combinatorial Control , 2022 .

[80]  Ludovic C. Gillet,et al.  Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis* , 2012, Molecular & Cellular Proteomics.

[81]  S. Stagg,et al.  Structure of the Sec13/31 COPII coat cage , 2006, Nature.

[82]  John R. Yates,et al.  Identification of Long-Lived Proteins Reveals Exceptional Stability of Essential Cellular Structures , 2013, Cell.

[83]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[84]  M. Hetzer,et al.  Border control at the nucleus: biogenesis and organization of the nuclear membrane and pore complexes. , 2009, Developmental cell.

[85]  R. Aebersold,et al.  Analysis of protein complexes using mass spectrometry , 2007, Nature Reviews Molecular Cell Biology.

[86]  Luis Mendoza,et al.  PASSEL: The PeptideAtlas SRMexperiment library , 2012, Proteomics.

[87]  Marek Elias,et al.  Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases , 2012, Journal of Cell Science.

[88]  Ludovic C. Gillet,et al.  Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system , 2013, Nature Methods.

[89]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[90]  Fred D. Mast,et al.  Evolutionary mechanisms for establishing eukaryotic cellular complexity. , 2014, Trends in cell biology.

[91]  S. Ramsey,et al.  Control of transcriptional variability by overlapping feed-forward regulatory motifs. , 2008, Biophysical journal.

[92]  Ilya Shmulevich,et al.  Trade-off between Responsiveness and Noise Suppression in Biomolecular System Responses to Environmental Cues , 2011, PLoS Comput. Biol..

[93]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[94]  Ulf Leser,et al.  Finding kinetic parameters using text mining. , 2004, Omics : a journal of integrative biology.

[95]  Craig D. Kaplan,et al.  From Structure to Systems: High-Resolution, Quantitative Genetic Analysis of RNA Polymerase II , 2013, Cell.

[96]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[97]  Daphne Koller,et al.  Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action , 2010, Genome Biology.

[98]  A. Eijkelenboom,et al.  FOXOs: signalling integrators for homeostasis maintenance , 2013, Nature reviews. Molecular cell biology.

[99]  T. Ideker,et al.  A new approach to decoding life: systems biology. , 2001, Annual review of genomics and human genetics.

[100]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[101]  S. Brenner Sequences and consequences , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[102]  Gregory C. Finnigan,et al.  Evolution of increased complexity in a molecular machine , 2012, Nature.

[103]  C. Duve,et al.  Intracellular localization of catalase and of some oxidases in rat liver. , 1960, Biochimica et biophysica acta.

[104]  M. Schuldiner,et al.  A novel single-cell screening platform reveals proteome plasticity during yeast stress responses , 2013, The Journal of cell biology.

[105]  E. Mardis Next-generation sequencing platforms. , 2013, Annual review of analytical chemistry.

[106]  James I. Garrels,et al.  Yeast Protein database (YPD): a database for the complete proteome of Saccharomyces cerevisiae , 1997, Nucleic Acids Res..

[107]  B. Alberts The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists , 1998, Cell.

[108]  R. Beijersbergen,et al.  Exploration of synthetic lethal interactions as cancer drug targets. , 2010, Future oncology.

[109]  André Hoelz,et al.  The structure of the nuclear pore complex. , 2011, Annual review of biochemistry.

[110]  John J Tyson,et al.  Functional motifs in biochemical reaction networks. , 2010, Annual review of physical chemistry.

[111]  R. Schekman,et al.  COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum , 1994, Cell.

[112]  Aaron N. Chang,et al.  Functional genomics identifies therapeutic targets for MYC-driven cancer , 2012, Proceedings of the National Academy of Sciences.

[113]  Albert-László Barabási,et al.  Erratum: Universality in network dynamics , 2013 .

[114]  R. Aebersold,et al.  Approaching complete peroxisome characterization by gas‐phase fractionation , 2002, Electrophoresis.

[115]  L. Steinmetz,et al.  Extensive transcriptional heterogeneity revealed by isoform profiling , 2013, Nature.

[116]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[117]  B. Chait,et al.  Determining the architectures of macromolecular assemblies , 2007, Nature.

[118]  D. Lauffenburger,et al.  Physicochemical modelling of cell signalling pathways , 2006, Nature Cell Biology.

[119]  A. Viana Alonso [Logic or chance?]. , 1992, Medicina clinica.

[120]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[121]  W. Doolittle,et al.  Evolutionary biology: A ratchet for protein complexity , 2012, Nature.

[122]  E. Koonin,et al.  Evolution of Cell Division: From Shear Mechanics to Complex Molecular Machineries , 2013, Cell.

[123]  Hod Lipson,et al.  Automated reverse engineering of nonlinear dynamical systems , 2007, Proceedings of the National Academy of Sciences.

[124]  Christie S. Chang,et al.  The BioGRID interaction database: 2013 update , 2012, Nucleic Acids Res..

[125]  Joshua F. McMichael,et al.  The Origin and Evolution of Mutations in Acute Myeloid Leukemia , 2012, Cell.

[126]  Tony Pawson,et al.  Temporal regulation of EGF signaling networks by the scaffold protein Shc1 , 2013, Nature.

[127]  Franco J. Vizeacoumar,et al.  Integrating high-throughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis , 2010, The Journal of cell biology.

[128]  T. Pawson,et al.  Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor , 2011, Nature Biotechnology.

[129]  E. Marcotte,et al.  Insights into the regulation of protein abundance from proteomic and transcriptomic analyses , 2012, Nature Reviews Genetics.

[130]  Mark C. Field,et al.  Molecular paleontology and complexity in the last eukaryotic common ancestor , 2013, Critical reviews in biochemistry and molecular biology.

[131]  A. Lander,et al.  How Cells Know Where They Are , 2013, Science.

[132]  William W. Chen,et al.  Classic and contemporary approaches to modeling biochemical reactions. , 2010, Genes & development.

[133]  Allison Doerr Mass spectrometry–based targeted proteomics , 2012, Nature Methods.

[134]  Martin Meier-Schellersheim,et al.  Multiscale modeling for biologists , 2009, Wiley interdisciplinary reviews. Systems biology and medicine.

[135]  John D Aitchison,et al.  Statistical analysis of dynamic transcriptional regulatory network structure. , 2011, Methods in molecular biology.