Computational prediction and analysis of protein-protein interaction networks

Biological networks provide insight into the complex organization of biological processes in a cell at the system level. They are an effective tool for understanding the comprehensive map of functional interactions, finding the functional modules and pathways. Reconstruction and comparative analysis of these networks provide useful information to identify functional modules, prioritization of disease causing genes and also identification of drug targets. The talk will consist of two parts. I will discuss several methods for protein-protein interaction network alignment and investigate their preferences to other existing methods. Further, I briefly talk about reconstruction of protein-protein interaction networks by using deep learning.

[1]  R. Karp,et al.  From the Cover : Conserved patterns of protein interaction in multiple species , 2005 .

[2]  Patrick Danaher,et al.  The joint graphical lasso for inverse covariance estimation across multiple classes , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[3]  David N. Messina,et al.  An ORFeome-based analysis of human transcription factor genes and the construction of a microarray to interrogate their expression. , 2004, Genome research.

[4]  Yangchao Huang,et al.  Simple sequence-based kernels do not predict protein-protein interactions , 2010, Bioinform..

[5]  Y. Freund,et al.  Profile-based string kernels for remote homology detection and motif extraction. , 2005, Journal of bioinformatics and computational biology.

[6]  Chong Su,et al.  The Modular Organization of Protein Interactions in Escherichia coli , 2009, PLoS Comput. Biol..

[7]  Frank Dudbridge,et al.  The Use of Edge-Betweenness Clustering to Investigate Biological Function in Protein Interaction Networks , 2005, BMC Bioinformatics.

[8]  Haiyuan Yu,et al.  HINT: High-quality protein interactomes and their applications in understanding human disease , 2012, BMC Systems Biology.

[9]  David A. Gough,et al.  Predicting protein-protein interactions from primary structure , 2001, Bioinform..

[10]  Olga G. Troyanskaya,et al.  Simultaneous Genome-Wide Inference of Physical, Genetic, Regulatory, and Functional Pathway Components , 2010, PLoS Comput. Biol..

[11]  Damian Szklarczyk,et al.  The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored , 2010, Nucleic Acids Res..

[12]  Bonnie Berger,et al.  Global alignment of multiple protein interaction networks with application to functional orthology detection , 2008, Proceedings of the National Academy of Sciences.

[13]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[14]  H. Parkinson,et al.  A global map of human gene expression , 2010, Nature Biotechnology.

[15]  Tijana Milenkovic,et al.  MAGNA: Maximizing Accuracy in Global Network Alignment , 2013, Bioinform..

[16]  Thomas Lengauer,et al.  A new measure for functional similarity of gene products based on Gene Ontology , 2006, BMC Bioinformatics.

[17]  Kevin Kontos,et al.  Information-Theoretic Inference of Large Transcriptional Regulatory Networks , 2007, EURASIP J. Bioinform. Syst. Biol..

[18]  Bonnie Berger,et al.  IsoRankN: spectral methods for global alignment of multiple protein networks , 2009, Bioinform..

[19]  Christie S. Chang,et al.  The BioGRID interaction database: 2013 update , 2012, Nucleic Acids Res..

[20]  Natasa Przulj,et al.  L-GRAAL: Lagrangian graphlet-based network aligner , 2015, Bioinform..

[21]  Burkhard Rost,et al.  Evolutionary profiles improve protein-protein interaction prediction from sequence , 2015, Bioinform..

[22]  W. Wong,et al.  Functional annotation and network reconstruction through cross-platform integration of microarray data , 2005, Nature Biotechnology.

[23]  Behnam Neyshabur,et al.  NETAL: a new graph-based method for global alignment of protein-protein interaction networks , 2013, Bioinform..

[24]  M. Vidal,et al.  Effect of sampling on topology predictions of protein-protein interaction networks , 2005, Nature Biotechnology.

[25]  E. Wang,et al.  Genetic studies of diseases , 2007, Cellular and Molecular Life Sciences.

[26]  Cesim Erten,et al.  BEAMS: backbone extraction and merge strategy for the global many-to-many alignment of multiple PPI networks , 2014, Bioinform..

[27]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[28]  Xiaoning Qian,et al.  Comparative Analysis of Biological Networks Using Markov Chains and Hidden Markov Models , 2011 .

[29]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[30]  Anushya Muruganujan,et al.  PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium , 2009, Nucleic Acids Res..

[31]  Jinbo Xu,et al.  HubAlign: an accurate and efficient method for global alignment of protein–protein interaction networks , 2014, Bioinform..

[32]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[33]  Ney Lemke,et al.  The Development of a Universal In Silico Predictor of Protein-Protein Interactions , 2013, PloS one.

[34]  Arie M. C. A. Koster,et al.  Treewidth computations I. Upper bounds , 2010, Inf. Comput..

[35]  Mark Gerstein,et al.  The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics , 2007, PLoS Comput. Biol..

[36]  Grgoire Montavon,et al.  Neural Networks: Tricks of the Trade , 2012, Lecture Notes in Computer Science.

[37]  Knut Reinert,et al.  NetCoffee: a fast and accurate global alignment approach to identify functionally conserved proteins in multiple networks , 2014, Bioinform..

[38]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[39]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[40]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[41]  Jing Zhao,et al.  Complex networks theory for analyzing metabolic networks , 2006, q-bio/0603015.

[42]  M. Gerstein,et al.  A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data , 2003, Science.

[43]  J. Collins,et al.  Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles , 2007, PLoS biology.

[44]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[45]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[46]  M. Cannataro,et al.  AlignNemo: A Local Network Alignment Method to Integrate Homology and Topology , 2012, PloS one.

[47]  Zhu-Hong You,et al.  An improved sequence-based prediction protocol for protein-protein interactions using amino acids substitution matrix and rotation forest ensemble classifiers , 2017, Neurocomputing.

[48]  Robert Patro,et al.  Global network alignment using multiscale spectral signatures , 2012, Bioinform..

[49]  Ziv Bar-Joseph,et al.  Evaluation of different biological data and computational classification methods for use in protein interaction prediction , 2006, Proteins.

[50]  Yuanfang Guan,et al.  Tissue-Specific Functional Networks for Prioritizing Phenotype and Disease Genes , 2012, PLoS Comput. Biol..

[51]  Natasa Przulj,et al.  Fuse: multiple network alignment via data fusion , 2014, Bioinform..

[52]  T. Ideker,et al.  A gene ontology inferred from molecular networks , 2012, Nature Biotechnology.

[53]  Yann LeCun,et al.  Signature Verification Using A "Siamese" Time Delay Neural Network , 1993, Int. J. Pattern Recognit. Artif. Intell..

[54]  Dianne P. O'Leary,et al.  Why Do Hubs in the Yeast Protein Interaction Network Tend To Be Essential: Reexamining the Connection between the Network Topology and Essentiality , 2008, PLoS Comput. Biol..

[55]  Natasa Przulj,et al.  Integrative network alignment reveals large regions of global network similarity in yeast and human , 2011, Bioinform..

[56]  Su-In Lee,et al.  Learning graphical models with hubs , 2014, J. Mach. Learn. Res..

[57]  Juan M. Vaquerizas,et al.  A census of human transcription factors: function, expression and evolution , 2009, Nature Reviews Genetics.

[58]  Jocelyn Sietsma,et al.  Creating artificial neural networks that generalize , 1991, Neural Networks.

[59]  E. Marcotte,et al.  A flaw in the typical evaluation scheme for pair-input computational predictions , 2012, Nature Methods.

[60]  Mei Liu,et al.  Prediction of protein-protein interactions using random decision forest framework , 2005, Bioinform..

[61]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[62]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[63]  Yves Moreau,et al.  Concordance of gene expression in human protein complexes reveals tissue specificity and pathology , 2013, Nucleic acids research.

[64]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[65]  Jugal K. Kalita,et al.  Reconstruction of gene co-expression network from microarray data using local expression patterns , 2014, BMC Bioinformatics.

[66]  William Stafford Noble,et al.  Kernel methods for predicting protein-protein interactions , 2005, ISMB.

[67]  Yongjin Park,et al.  Resolving the structure of interactomes with hierarchical agglomerative clustering , 2011, BMC Bioinformatics.

[68]  Julie A. Hines,et al.  A proteome-wide protein interaction map for Campylobacter jejuni , 2007, Genome Biology.

[69]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[70]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[71]  Frederick P. Roth,et al.  Predicting co-complexed protein pairs using genomic and proteomic data integration , 2004, BMC Bioinformatics.

[72]  Leszek Rychlewski,et al.  Fold prediction by a hierarchy of sequence, threading, and modeling methods , 1998, Protein science : a publication of the Protein Society.

[73]  Byung-Jun Yoon,et al.  SMETANA: Accurate and Scalable Algorithm for Probabilistic Alignment of Large-Scale Biological Networks , 2013, PloS one.

[74]  Tijana Milenkovic,et al.  MAGNA++: Maximizing Accuracy in Global Network Alignment via both node and edge conservation , 2015, Bioinform..

[75]  Byung-Jun Yoon,et al.  A Network Synthesis Model for Generating Protein Interaction Network Families , 2012, PloS one.

[76]  Yi Pan,et al.  Protein-protein interactions: detection, reliability assessment and applications , 2016, Briefings Bioinform..

[77]  Kenji Mizuguchi,et al.  Homology-based prediction of interactions between proteins using Averaged One-Dependence Estimators , 2014, BMC Bioinformatics.

[78]  Guimei Liu,et al.  Assessing and predicting protein interactions using both local and global network topological metrics. , 2008 .

[79]  O. Kuchaiev,et al.  Simulating trait evolution for cross-cultural comparison , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[80]  Cheng-Yu Ma,et al.  Optimizing a global alignment of protein interaction networks , 2013, Bioinform..

[81]  J. Wojcik,et al.  The protein–protein interaction map of Helicobacter pylori , 2001, Nature.

[82]  S. Bondos,et al.  Physical and Genetic Interactions Link Hox Function with Diverse Transcription Factors and Cell Signaling Proteins* , 2006, Molecular & Cellular Proteomics.