Prediction of Giant Tunneling Magnetoresistance in RuO$_{2}$/TiO$_{2}$/RuO$_{2}$ (110) Antiferromagnetic Tunnel Junctions

Using first-principles quantum-transport calculations, we investigate spin-dependent electronic and transport properties of antiferromagnetic tunnel junctions (AFMTJs) that consist of (110)-oriented antiferromagnetic (AFM) metal RuO$_{2}$ electrodes and an insulating TiO$_{2}$ tunneling barrier. We predict the emergence of a giant tunneling magnetoresistance (TMR) effect in a wide energy window, a series of barrier layer thicknesses, and different interface terminations, indicating the robustness of this effect. We show that the predicted TMR cannot be explained in terms of the global transport spin-polarization of RuO$_{2}$ (110) but is well understood based on matching the momentum-dependent spin-polarized conduction channels of the two RuO$_{2}$ (110) electrodes. We predict oscillations of TMR with increasing barrier thickness, indicating a non-negligible contribution from the perfectly epitaxial interfaces. Our work helps the understanding of the physics of TMR in AFMTJs and aids in realizing efficient AFM spintronic devices.

[1]  E. Tsymbal,et al.  Tunneling magnetoresistance in magnetic tunnel junctions with a single ferromagnetic electrode , 2023, 2310.02139.

[2]  C. Wan,et al.  Crystal-facet-oriented altermagnets for detecting ferromagnetic and antiferromagnetic states by giant tunneling magnetoresistance , 2023, Physical Review Applied.

[3]  E. Tsymbal,et al.  Extraordinary Tunneling Magnetoresistance in Antiferromagnetic Tunnel Junctions with Antiperovskite Electrodes , 2023, 2306.03026.

[4]  Z. Zeng,et al.  Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction , 2023, Nature.

[5]  R. Arita,et al.  Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction , 2023, Nature.

[6]  E. Tsymbal,et al.  Néel Spin Currents in Antiferromagnets. , 2022, Physical review letters.

[7]  F. Pan,et al.  Antiferromagnetism: An efficient and controllable spin source , 2022, Applied Physics Reviews.

[8]  E. Tsymbal,et al.  Spin-neutral tunneling anomalous Hall effect , 2022, Physical Review B.

[9]  J. Sinova,et al.  Emerging Research Landscape of Altermagnetism , 2022, Physical Review X.

[10]  E. Tsymbal,et al.  Tunneling Magnetoresistance in Noncollinear Antiferromagnetic Tunnel Junctions , 2021, 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers).

[11]  Takahiro Tanaka,et al.  Observation of Spin-Splitter Torque in Collinear Antiferromagnetic RuO_{2}. , 2021, Physical review letters.

[12]  Q. Wang,et al.  Observation of Spin Splitting Torque in a Collinear Antiferromagnet RuO_{2}. , 2021, Physical review letters.

[13]  E. Tsymbal,et al.  Transport spin polarization of noncollinear antiferromagnetic antiperovskites , 2021, Physical Review Materials.

[14]  D. Muller,et al.  Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide , 2021, Nature Electronics.

[15]  J. Sinova,et al.  Giant and Tunneling Magnetoresistance in Unconventional Collinear Antiferromagnets with Nonrelativistic Spin-Momentum Coupling , 2021, Physical Review X.

[16]  E. Tsymbal,et al.  Spin-neutral currents for spintronics , 2021, Nature Communications.

[17]  J. Jia,et al.  Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current , 2021, Nature Communications.

[18]  A. Zunger,et al.  Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having momentum-dependent spin splitting even without spin-orbit coupling , 2020, 2008.08532.

[19]  A. Zunger,et al.  Giant momentum-dependent spin splitting in centrosymmetric low- Z antiferromagnets , 2020 .

[20]  J. Sinova,et al.  An anomalous Hall effect in altermagnetic ruthenium dioxide , 2020, Nature Electronics.

[21]  J. Sinova,et al.  Efficient Electrical Spin Splitter Based on Nonrelativistic Collinear Antiferromagnetism. , 2020, Physical review letters.

[22]  S. Hayami,et al.  Momentum-Dependent Spin Splitting by Collinear Antiferromagnetic Ordering , 2019, Journal of the Physical Society of Japan.

[23]  Mitsuaki Kawamura,et al.  FermiSurfer: Fermi-surface viewer providing multiple representation schemes , 2019, Comput. Phys. Commun..

[24]  E. Tsymbal,et al.  Spintronics Handbook: Spin Transport and Magnetism, Second Edition , 2019 .

[25]  Kurt Stokbro,et al.  QuantumATK: an integrated platform of electronic and atomic-scale modelling tools , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  Y. Motome,et al.  Spin current generation in organic antiferromagnets , 2019, Nature Communications.

[27]  P. Lamberti Tunneling , 2018, The Semiclassical Way to Dynamics and Spectroscopy.

[28]  A. Brataas,et al.  Antiferromagnetic spin textures and dynamics , 2018 .

[29]  C. Felser,et al.  Spin-Polarized Current in Noncollinear Antiferromagnets. , 2017, Physical review letters.

[30]  O. Delaire,et al.  Itinerant Antiferromagnetism in RuO_{2}. , 2016, Physical review letters.

[31]  S. Sanvito,et al.  First-principles spin-transfer torque in CuMnAs | GaP | CuMnAs junctions , 2016, 1611.07445.

[32]  A. Manchon Spin diffusion and torques in disordered antiferromagnets , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[33]  X. Waintal,et al.  Robust spin transfer torque in antiferromagnetic tunnel junctions , 2016, 1607.01523.

[34]  Di Xiao,et al.  Terahertz Antiferromagnetic Spin Hall Nano-Oscillator. , 2015, Physical review letters.

[35]  J. Wunderlich,et al.  Antiferromagnetic spintronics. , 2015, Nature nanotechnology.

[36]  Di Xiao,et al.  Ultrafast switching of antiferromagnets via spin-transfer torque , 2015, 1503.00076.

[37]  H. Béa,et al.  Spin-dependent transport in antiferromagnetic tunnel junctions , 2014 .

[38]  Arash A. Mostofi,et al.  An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions , 2014, Comput. Phys. Commun..

[39]  X. Waintal,et al.  Spin transfer torque in antiferromagnetic spin valves: From clean to disordered regimes , 2014, 1403.6383.

[40]  D. Hamann Optimized norm-conserving Vanderbilt pseudopotentials , 2013, 1306.4707.

[41]  Mohamad Towfik Krounbi,et al.  Basic principles of STT-MRAM cell operation in memory arrays , 2013 .

[42]  E. Tsymbal,et al.  Tunneling Magnetoresistance: Theory , 2011 .

[43]  V. Loktev,et al.  Spin transfer and current-induced switching in antiferromagnets , 2009, 0909.0234.

[44]  K. Xia,et al.  Spin-transfer torques in antiferromagnetic metals from first principles. , 2007, Physical review letters.

[45]  D. Waldron,et al.  Ab initio giant magnetoresistance and current-induced torques in Cr/Au/Cr multilayers , 2006, cond-mat/0611599.

[46]  R. Duine,et al.  Theory of spin torques and giant magnetoresistance in antiferromagnetic metals , 2006 .

[47]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[48]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[49]  E. Tsymbal,et al.  Effect of interface bonding on spin-dependent tunneling from the oxidized Co surface , 2003, cond-mat/0308268.

[50]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[51]  Jian Wang,et al.  Ab initio modeling of quantum transport properties of molecular electronic devices , 2001 .

[52]  A. Umerski,et al.  Theory of tunneling magnetoresistance of an epitaxial Fe/MgO/Fe(001) junction , 2001 .

[53]  N. Marzari,et al.  Maximally localized Wannier functions for entangled energy bands , 2001, cond-mat/0108084.

[54]  T. Schulthess,et al.  Spin-dependent tunneling conductance of Fe | MgO | Fe sandwiches , 2001 .

[55]  P. Dederichs,et al.  Complex band structure and tunneling through ferromagnet /Insulator /Ferromagnet junctions , 2000, Physical review letters.

[56]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[57]  I. Mazin How to Define and Calculate the Degree of Spin Polarization in Ferromagnets , 1998, cond-mat/9812327.

[58]  R. Buhrman,et al.  Probing Ferromagnets with Andreev Reflection , 1998 .

[59]  J. Moodera,et al.  Measuring the spin polarization of a metal with a superconducting point contact , 1998, Science.

[60]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[61]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[62]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[63]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[64]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[65]  J. Moodera,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[66]  P. M. Tedrow,et al.  Spin-polarized electron tunneling , 1994 .

[67]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[68]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[69]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[70]  E. Tsymbal,et al.  Spin-Dependent Tunneling in Magnetic Tunnel Junctions , 2003 .