Van der Waals electride: Toward intrinsic two-dimensional ferromagnetism of spin-polarized anionic electrons

[1]  Subin Lee,et al.  Water- and acid-stable self-passivated dihafnium sulfide electride and its persistent electrocatalytic reaction , 2020, Science Advances.

[2]  Jianzhou Zhao,et al.  Fermi liquid behavior and colossal magnetoresistance in layered MoOCl2 , 2020, 2003.11905.

[3]  H. Hosono,et al.  Ferromagnetic quasi-atomic electrons in two-dimensional electride , 2020, Nature Communications.

[4]  Harold S. Park,et al.  Multiscale computational understanding and growth of 2D materials: a review , 2020, npj Computational Materials.

[5]  H. Mao,et al.  Identifying quasi-2D and 1D electrides in yttrium and scandium chlorides via geometrical identification , 2018, npj Computational Materials.

[6]  Z. Liao,et al.  Spin Direction-Controlled Electronic Band Structure in Two-Dimensional Ferromagnetic CrI3. , 2018, Nano letters.

[7]  Hyun Ho Kim,et al.  One Million Percent Tunnel Magnetoresistance in a Magnetic van der Waals Heterostructure. , 2018, Nano letters.

[8]  Wang Yao,et al.  Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 , 2018, Nature Materials.

[9]  J. Gupta,et al.  Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit. , 2018, Nano letters.

[10]  Takashi Taniguchi,et al.  Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3 , 2018, Nature Communications.

[11]  Seong-Gon Kim,et al.  Tuning the Spin-Alignment of Interstitial Electrons in Two-Dimensional Y2C Electride via Chemical Pressure. , 2017, Journal of the American Chemical Society.

[12]  J T Paul,et al.  Computational methods for 2D materials: discovery, property characterization, and application design , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[13]  Michael A. McGuire,et al.  Ligand-field helical luminescence in a 2D ferromagnetic insulator , 2017, 1710.05550.

[14]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[15]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[16]  H. Hosono,et al.  Strong Localization of Anionic Electrons at Interlayer for Electrical and Magnetic Anisotropy in Two-Dimensional Y2C Electride. , 2017, Journal of the American Chemical Society.

[17]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[18]  Roald Hoffmann,et al.  High-pressure electrides: the chemical nature of interstitial quasiatoms. , 2015, Journal of the American Chemical Society.

[19]  Roald Hoffmann,et al.  High pressure electrides: a predictive chemical and physical theory. , 2014, Accounts of chemical research.

[20]  H. Hosono,et al.  Dicalcium nitride as a two-dimensional electride with an anionic electron layer , 2013, Nature.

[21]  Ilsoo Kim,et al.  Exchange-induced electron transport in heavily phosphorus-doped si nanowires. , 2011, Nano letters.

[22]  Chris J Pickard,et al.  Predicted pressure-induced s-band ferromagnetism in alkali metals. , 2011, Physical review letters.

[23]  Min Yu,et al.  Accurate and efficient algorithm for Bader charge integration. , 2010, The Journal of chemical physics.

[24]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  J. Lalena,et al.  Magnetic and Dielectric Properties , 2005, Principles of Inorganic Materials Design.

[26]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[27]  J. L. Dye,et al.  Electrides: From 1D Heisenberg Chains to 2D Pseudo-Metals† , 1997 .

[28]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[29]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[30]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[31]  H. Yamatera,et al.  X-Ray Photoelectron Spectroscopy of Rare Earth Halides , 1986 .

[32]  D. Williams,et al.  Transferability of nonbonded Cl⋯Cl potential energy function to crystalline chlorine , 1985 .

[33]  J. Corbett,et al.  Lanthanum monochloride and lanthanum sesquichloride , 1981 .

[34]  J. Corbett,et al.  Reduced halides of yttrium with strong metal-metal bonding: yttrium monochloride, monobromide, sesquichloride, and sesquibromide , 1980 .

[35]  J. Corbett,et al.  Zirconium monobromide, a second double metal sheet structure. Some physical and chemical properties of the metallic zirconium monochloride and monobromide , 1977 .

[36]  T. Yokoyama,et al.  Raman Spectrum and Intermolecular Forces of the Chlorine Crystal , 1969 .

[37]  K. Yosida,et al.  Anomalous Electrical Resistivity and Magnetoresistance Due to an s − d Interaction in Cu-Mn Alloys , 1957 .

[38]  John B. Goodenough,et al.  Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3 , 1955 .

[39]  C. Kittel Introduction to solid state physics , 1954 .

[40]  Charles Kittel,et al.  Quantum Theory of Solids , 1963 .