α-Hydroxyketone Synthesis and Sensing by Legionella and Vibrio

Bacteria synthesize and sense low molecular weight signaling molecules, termed autoinducers, to measure their population density and community complexity. One class of autoinducers, the α-hydroxyketones (AHKs), is produced and detected by the water-borne opportunistic pathogens Legionella pneumophila and Vibrio cholerae, which cause Legionnaires’ disease and cholera, respectively. The “Legionella quorum sensing” (lqs) or “cholera quorum sensing” (cqs) genes encode enzymes that produce and sense the AHK molecules “Legionella autoinducer-1” (LAI-1; 3-hydroxypentadecane-4-one) or cholera autoinducer-1 (CAI-1; 3-hydroxytridecane-4-one). AHK signaling regulates the virulence of L. pneumophila and V. cholerae, pathogen-host cell interactions, formation of biofilms or extracellular filaments, expression of a genomic “fitness island” and competence. Here, we outline the processes, wherein AHK signaling plays a role, and review recent insights into the function of proteins encoded by the lqs and cqs gene clusters. To this end, we will focus on the autoinducer synthases catalysing the biosynthesis of AHKs, on the cognate trans-membrane sensor kinases detecting the signals, and on components of the down-stream phosphorelay cascade that promote the transmission and integration of signaling events regulating gene expression.

[1]  H. Hilbi,et al.  Pathogen trafficking pathways and host phosphoinositide metabolism , 2009, Molecular microbiology.

[2]  B. Bassler,et al.  Quorum sensing in bacteria. , 2001, Annual review of microbiology.

[3]  P. Cock,et al.  Evolution of prokaryotic two-component systems: insights from comparative genomics , 2009, Amino Acids.

[4]  R. Gross,et al.  Regulation of bacterial virulence by two-component systems. , 2006, Current opinion in microbiology.

[5]  M. Berger,et al.  The Vibrio harveyi master quorum-sensing regulator, LuxR, a TetR-type protein is both an activator and a repressor: DNA recognition and binding specificity at target promoters , 2008, Molecular microbiology.

[6]  J. Glenn Morris,et al.  Cholera transmission: the host, pathogen and bacteriophage dynamic , 2009, Nature Reviews Microbiology.

[7]  M. Jules,et al.  Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila , 2009, Molecular microbiology.

[8]  Bonnie L. Bassler,et al.  Parallel Quorum Sensing Systems Converge to Regulate Virulence in Vibrio cholerae , 2002, Cell.

[9]  Anisia J. Silva,et al.  Cyclic AMP post‐transcriptionally regulates the biosynthesis of a major bacterial autoinducer to modulate the cell density required to activate quorum sensing , 2008, FEBS letters.

[10]  Jun Zhu,et al.  The VarS/VarA two-component system modulates the activity of the Vibrio cholerae quorum-sensing transcriptional regulator HapR. , 2011, Microbiology.

[11]  Bonnie L. Bassler,et al.  Interference with AI-2-mediated bacterial cell–cell communication , 2005, Nature.

[12]  B. Bassler,et al.  Mechanism of Vibrio cholerae Autoinducer-1 Biosynthesis , 2011, ACS chemical biology.

[13]  I. Chou,et al.  The Genomic Sequence of the Accidental Pathogen Legionella pneumophila , 2004, Science.

[14]  H. Hilbi,et al.  Environmental predators as models for bacterial pathogenesis. , 2007, Environmental microbiology.

[15]  N. Wingreen,et al.  The Small RNA Chaperone Hfq and Multiple Small RNAs Control Quorum Sensing in Vibrio harveyi and Vibrio cholerae , 2004, Cell.

[16]  J. Garey,et al.  The evolution of bacterial LuxI and LuxR quorum sensing regulators. , 2001, Microbiology.

[17]  Rekha Seshadri,et al.  Bacterial Genomics and Pathogen Evolution , 2006, Cell.

[18]  H. Hilbi,et al.  Legionella spp. outdoors: colonization, communication and persistence. , 2011, Environmental microbiology reports.

[19]  E. Groisman,et al.  Signal integration in bacterial two-component regulatory systems. , 2008, Genes & development.

[20]  E. Greenberg,et al.  Signalling: Listening in on bacteria: acyl-homoserine lactone signalling , 2002, Nature Reviews Molecular Cell Biology.

[21]  C. Waters,et al.  Integration of Cyclic di-GMP and Quorum Sensing in the Control of vpsT and aphA in Vibrio cholerae , 2011, Journal of bacteriology.

[22]  James T Hodgkinson,et al.  Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. , 2011, Chemical reviews.

[23]  M. Silverman,et al.  Identification of genes and gene products necessary for bacterial bioluminescence. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[24]  H. Hilbi,et al.  Endosomal and secretory markers of the Legionella-containing vacuole , 2009, Communicative & integrative biology.

[25]  Md. Arif Sheikh,et al.  Insights into the biosynthesis of the Vibrio cholerae major autoinducer CAI-1 from the crystal structure of the PLP-dependent enzyme CqsA. , 2009, Journal of molecular biology.

[26]  B. Bassler,et al.  Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing , 2006, Cell.

[27]  Philippe Ortet,et al.  P2CS: a database of prokaryotic two-component systems , 2010, Nucleic Acids Res..

[28]  Michael Steinert,et al.  Pathogen-host interactions in Dictyostelium, Legionella, Mycobacterium and other pathogens. , 2011, Seminars in cell & developmental biology.

[29]  I. V. van Driel,et al.  Molecular Pathogenesis of Infections Caused by Legionella pneumophila , 2010, Clinical Microbiology Reviews.

[30]  Zhao-Qing Luo,et al.  Comprehensive Identification of Protein Substrates of the Dot/Icm Type IV Transporter of Legionella pneumophila , 2011, PloS one.

[31]  B. Bassler,et al.  Bacterial quorum-sensing network architectures. , 2009, Annual review of genetics.

[32]  Victor J. DiRita,et al.  Regulatory Networks Controlling Vibrio cholerae Virulence Gene Expression , 2007, Infection and Immunity.

[33]  C. Buchrieser,et al.  Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity , 2004, Nature Genetics.

[34]  Bonnie L. Bassler,et al.  Three Parallel Quorum-Sensing Systems Regulate Gene Expression in Vibrio harveyi , 2004, Journal of bacteriology.

[35]  Rita Tamayo,et al.  Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. , 2007, Cell host & microbe.

[36]  N. Moran,et al.  The evolutionary history of quorum-sensing systems in bacteria. , 2004, Molecular biology and evolution.

[37]  M. Heidtman,et al.  The Legionella pneumophila replication vacuole: making a cosy niche inside host cells , 2009, Nature Reviews Microbiology.

[38]  Maurizio Labbate,et al.  AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria , 2008, The ISME Journal.

[39]  Carmen Buchrieser,et al.  Comparative and Functional Genomics of Legionella Identified Eukaryotic Like Proteins as Key Players in Host–Pathogen Interactions , 2011, Front. Microbio..

[40]  B. Bassler,et al.  Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems , 2011, Molecular microbiology.

[41]  E. Meighen,et al.  Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi. , 1989, The Journal of biological chemistry.

[42]  C. Médigue,et al.  Extensive recombination events and horizontal gene transfer shaped the Legionella pneumophila genomes , 2011, BMC Genomics.

[43]  Bonnie L. Bassler,et al.  Deducing Receptor Signaling Parameters from In Vivo Analysis: LuxN/AI-1 Quorum Sensing in Vibrio harveyi , 2008, Cell.

[44]  X. Charpentier,et al.  The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectors , 2009, Cellular microbiology.

[45]  D. Zamboni,et al.  Innate Immunity to Legionella Pneumophila , 2011, Front. Microbio..

[46]  Lian-Hui Zhang,et al.  Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. , 2011, Chemical reviews.

[47]  M. Waldor,et al.  CTXφ and Vibrio cholerae: exploring a newly recognized type of phage–host cell relationship , 2005, Molecular microbiology.

[48]  B. Bassler,et al.  Structural identification of a bacterial quorum-sensing signal containing boron , 2002, Nature.

[49]  A. Pascual-Montano,et al.  The cyclic AMP receptor protein modulates quorum sensing, motility and multiple genes that affect intestinal colonization in Vibrio cholerae. , 2007, Microbiology.

[50]  P. Seitz,et al.  Quorum Sensing Contributes to Natural Transformation of Vibrio cholerae in a Species-Specific Manner , 2011, Journal of bacteriology.

[51]  M. Swanson,et al.  A two‐component regulator induces the transmission phenotype of stationary‐phase Legionella pneumophila , 2002, Molecular microbiology.

[52]  R. Bentham,et al.  Legionella, Protozoa, and Biofilms: Interactions Within Complex Microbial Systems , 2009, Microbial Ecology.

[53]  M. Swanson,et al.  Differentiate to thrive: lessons from the Legionella pneumophila life cycle , 2004, Molecular microbiology.

[54]  B. Bassler,et al.  A genetic analysis of the function of LuxO, a two‐component response regulator involved in quorum sensing in Vibrio harveyi , 1999, Molecular microbiology.

[55]  C. Buchrieser,et al.  The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA , 2007, Cellular microbiology.

[56]  P. Declerck Biofilms: the environmental playground of Legionella pneumophila. , 2010, Environmental microbiology.

[57]  Bonnie L. Bassler,et al.  The major Vibrio cholerae autoinducer and its role in virulence factor production , 2007, Nature.

[58]  Craig R Roy,et al.  Modulation of host cell function by Legionella pneumophila type IV effectors. , 2010, Annual review of cell and developmental biology.

[59]  B. Bassler,et al.  Small molecule probes of the receptor binding site in the Vibrio cholerae CAI-1 quorum sensing circuit. , 2011, Bioorganic & medicinal chemistry.

[60]  Bonnie L. Bassler,et al.  Bacterially Speaking , 2006, Cell.

[61]  Gilbert Greub,et al.  Microorganisms Resistant to Free-Living Amoebae , 2004, Clinical Microbiology Reviews.

[62]  B. Bassler,et al.  Sequence and Function of LuxU: a Two-Component Phosphorelay Protein That Regulates Quorum Sensing inVibrio harveyi , 1999, Journal of bacteriology.

[63]  B. Hammer,et al.  The Vibrio cholerae quorum sensing response is mediated by Hfq‐dependent sRNA/mRNA base pairing interactions , 2011, Molecular microbiology.

[64]  Jun Zhu,et al.  Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. , 2003, Developmental cell.

[65]  F. Yildiz,et al.  Vibrio biofilms: so much the same yet so different. , 2009, Trends in microbiology.

[66]  Ronald K. Taylor,et al.  Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae , 2000, Molecular microbiology.

[67]  C. Buchrieser,et al.  Adaptation of Legionella pneumophila to the host environment: role of protein secretion, effectors and eukaryotic-like proteins. , 2006, Current opinion in microbiology.

[68]  Jun Zhu,et al.  CsrA and three redundant small RNAs regulate quorum sensing in Vibrio cholerae , 2005, Molecular microbiology.

[69]  Lukas N. Mueller,et al.  Proteome Analysis of Legionella Vacuoles Purified by Magnetic Immunoseparation Reveals Secretory and Endosomal GTPases , 2009, Traffic.

[70]  J. Carratalá,et al.  An update on Legionella , 2010, Current opinion in infectious diseases.

[71]  E. Antonova,et al.  Quorum-sensing autoinducer molecules produced by members of a multispecies biofilm promote horizontal gene transfer to Vibrio cholerae. , 2011, FEMS microbiology letters.

[72]  C. Buchrieser,et al.  The Legionella Autoinducer Synthase LqsA Produces an α-Hydroxyketone Signaling Molecule* , 2008, Journal of Biological Chemistry.

[73]  B. Bassler,et al.  The small nucleoid protein Fis is involved in Vibrio cholerae quorum sensing , 2007, Molecular microbiology.

[74]  C. Buchrieser,et al.  The autoinducer synthase LqsA and putative sensor kinase LqsS regulate phagocyte interactions, extracellular filaments and a genomic island of Legionella pneumophila. , 2010, Environmental microbiology.

[75]  Joshua D. Rabinowitz,et al.  Quorum Sensing Controls Biofilm Formation in Vibrio cholerae through Modulation of Cyclic Di-GMP Levels and Repression of vpsT , 2004, Journal of bacteriology.

[76]  M. Swanson,et al.  Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication , 2003, Molecular microbiology.

[77]  J. Rabinowitz,et al.  The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA , 2009, Nature chemical biology.

[78]  Bonnie L Bassler,et al.  Quorum sensing controls biofilm formation in Vibrio cholerae , 2003, Molecular microbiology.

[79]  M. Laub,et al.  Overexpression of VpsS, a Hybrid Sensor Kinase, Enhances Biofilm Formation in Vibrio cholerae , 2009, Journal of bacteriology.

[80]  G. Schoolnik,et al.  Chitin Induces Natural Competence in Vibrio cholerae , 2005, Science.

[81]  N. Wingreen,et al.  Probing bacterial transmembrane histidine kinase receptor–ligand interactions with natural and synthetic molecules , 2010, Proceedings of the National Academy of Sciences.

[82]  C. Buchrieser,et al.  Synergistic Contribution of the Legionella pneumophila lqs Genes to Pathogen-Host Interactions , 2008, Journal of bacteriology.

[83]  C. Buchrieser,et al.  Analysis of the Legionella longbeachae Genome and Transcriptome Uncovers Unique Strategies to Cause Legionnaires' Disease , 2010, PLoS genetics.

[84]  H. Hilbi,et al.  Anchors for Effectors: Subversion of Phosphoinositide Lipids by Legionella , 2011, Front. Microbio..

[85]  T. Mascher,et al.  Stimulus Perception in Bacterial Signal-Transducing Histidine Kinases , 2006, Microbiology and Molecular Biology Reviews.

[86]  Barry S. Fields,et al.  Legionella and Legionnaires' Disease: 25 Years of Investigation , 2002, Clinical Microbiology Reviews.

[87]  Bonnie L. Bassler,et al.  Quorum-sensing regulators control virulence gene expression in Vibrio cholerae , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Roberto Kolter,et al.  New developments in microbial interspecies signaling. , 2009, Current opinion in microbiology.

[89]  K. Nealson,et al.  Bacterial bioluminescence: Isolation and genetic analysis of functions from Vibrio fischeri , 1983, Cell.