Limit cycles of Discontinuous Piecewise Linear differential Systems

We study the bifurcation of limit cycles from the periodic orbits of a two-dimensional (resp. four-dimensional) linear center in ℝn perturbed inside a class of discontinuous piecewise linear differential systems. Our main result shows that at most 1 (resp. 3) limit cycle can bifurcate up to first-order expansion of the displacement function with respect to the small parameter. This upper bound is reached. For proving these results, we use the averaging theory in a form where the differentiability of the system is not needed.

[1]  Jaume Llibre,et al.  Bifurcation of limit cycles from a two-dimensional center inside Rn , 2010 .

[2]  Tere M. Seara,et al.  Generic bifurcations of low codimension of planar Filippov Systems , 2011 .

[3]  Marco Antonio Teixeira,et al.  Perturbation Theory for Non-smooth Systems , 2009, Encyclopedia of Complexity and Systems Science.

[4]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .

[5]  A. Sändig,et al.  Nonlinear Differential Equations , 1980 .

[6]  Maoan Han,et al.  On Hopf bifurcation in non-smooth planar systems , 2010 .

[7]  Jaume Llibre,et al.  Averaging methods for finding periodic orbits via Brouwer degree , 2004 .

[8]  Paul Glendinning,et al.  Non-smooth pitchfork bifurcations , 2004 .

[9]  Mario di Bernardo,et al.  Bifurcations in Nonsmooth Dynamical Systems , 2008, SIAM Rev..

[10]  Floris Takens,et al.  Singularities of vector fields , 1974 .

[11]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[12]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[13]  Jaume Llibre,et al.  Bifurcation of limit cycles from a centre in ℝ4 in resonance 1:N , 2009 .

[14]  Maoan Han,et al.  Bifurcations of periodic orbits, subharmonic solutions and invariant Tori of high-dimensional systems , 1999 .

[15]  Jaume Llibre,et al.  Asymptotic Stability of Periodic Solutions for Nonsmooth Differential Equations with Application to the Nonsmooth van der Pol Oscillator , 2007, SIAM J. Math. Anal..

[16]  Marco Antonio Teixeira,et al.  Generic bifurcation in manifolds with boundary , 1977 .

[17]  A. A. Andronov CHAPTER VIII – THE METHOD OF THE POINT TRANSFORMATIONS IN PIECE-WISE LINEAR SYSTEMS† , 1966 .

[18]  A. R. Roy,et al.  Border Collision bifurcations in Three-Dimensional Piecewise Smooth Systems , 2008, Int. J. Bifurc. Chaos.

[19]  Yuri A. Kuznetsov,et al.  One-Parameter bifurcations in Planar Filippov Systems , 2003, Int. J. Bifurc. Chaos.

[20]  Paulo Ricardo da Silva,et al.  Closed poly-trajectories and Poincaré index of non-smooth vector fields on the plane , 2010, 1002.4169.

[21]  Leon O. Chua,et al.  STRUCTURALLY STABLE SYSTEMS , 2001 .

[22]  F. Verhulst Nonlinear Differential Equations and Dynamical Systems , 1989 .

[23]  Jaume Llibre,et al.  Bifurcation of Limit Cycles from a Four-Dimensional Center in Control Systems , 2005, Int. J. Bifurc. Chaos.