Effect of Backhaul Technologies on 3G Network Performance: A Case Study of Ado-Ekiti

In the past years, when wireless network improvement occurs from 1G/2G to third generation (3G), the rate in the use of real-time traffic oriented applications for voice, video and data increases. Consequently, the bandwidth to be backhauled from the cell site to the mobile switching center increases rapidly. 3G network is most prevalent in Nigeria with wide area of coverage. However, in recent times, poor subscribers’ mobile broadband experience is still the major challenge faced by many GSM operators. One of the major causes of this challenge is the use of wrong backhaul for radio access network (RAN). This lead to poor traffic throughput, high packet loss or frame loss at the cell edge. To overcome this challenge, the use of appropriate backhaul technology is crucial. Third Generation Partnership Program (3GPP) recommends the use of either asynchronous transfer mode (ATM) or internet protocol (IP) as the backhaul technologies for its RAN. This paper presents the performance analysis and the comparison of the ATM RAN and IP RAN backhaul technologies using six different 3G sites (with 3G base stations) located at Ado local government area of Ekiti State, Nigeria. The performance of each base station with different backhaul technology was evaluated in term of average maximum throughput per day. The effect of frame loss (for ATM RAN network) and packet loss (for IP RAN network) on traffic throughput were also analyzed. The comparison of the overall result analysis shows that the 3G base stations with IP-based RAN backhaul has better performance than the base station with ATM-based RAN backhaul.

[1]  Sven Mattisson,et al.  An Overview of 5G Requirements and Future Wireless Networks: Accommodating Scaling Technology , 2018, IEEE Solid-State Circuits Magazine.

[2]  Admela Jukan,et al.  The Evolution of Cellular Backhaul Technologies: Current Issues and Future Trends , 2011, IEEE Communications Surveys & Tutorials.

[3]  Muhammad Ali Imran,et al.  A joint backhaul and RAN perspective on the benefits of centralised RAN functions , 2016, 2016 IEEE International Conference on Communications Workshops (ICC).

[4]  Elvino S. Sousa,et al.  5G is Real: Evaluating the Compliance of the 3GPP 5G New Radio System With the ITU IMT-2020 Requirements , 2020, IEEE Access.

[5]  Lisa Dresner Broadband Telecommunications Handbook , 2016 .

[6]  Francisco-Javier Simó-Reigadas,et al.  The TUCAN3G project: wireless technologies for isolated rural communities in developing countries based on 3G small cell deployments , 2016, IEEE Communications Magazine.

[7]  N. Muthukumaran,et al.  Analyzing Throughput of MANET with Reduced Packet Loss , 2017, Wirel. Pers. Commun..

[8]  Phillip Leithead,et al.  Integrating Fronthaul and Backhaul Networks: Transport Challenges and Feasibility Results , 2021, IEEE Transactions on Mobile Computing.

[9]  M. El-Sayed,et al.  Domains of Application for Backhaul Technologies in 3G Wireless Networks , 2006, Networks 2006. 12th International Telecommunications Network Strategy and Planning Symposium.

[10]  Michele Zorzi,et al.  Integrated Access and Backhaul in 5G mmWave Networks: Potentials and Challenges , 2019, ArXiv.

[11]  Francisco-Javier Simó-Reigadas,et al.  Assessing IEEE 802.11 and IEEE 802.16 as Backhauling Technologies for 3G Small Cells in Rural Areas of Developing Countries , 2019, Mob. Inf. Syst..

[12]  Henrik Hjalmarsson,et al.  Automatic configuration of QoS parameters in IP RAN , 2009 .

[13]  Kai,et al.  PTN and IP-Based Mobile Backhaul , 2010 .

[14]  Ayoleke F Ibikunle,et al.  Comparative Analysis of Routing Technologies in Next GenerationConverged IP Network , 2011 .

[15]  Attila Hilt,et al.  Microwave Hop-Length and Availability Targets for the 5G Mobile Backhaul , 2019, 2019 42nd International Conference on Telecommunications and Signal Processing (TSP).

[16]  Vishal Sharma,et al.  Security of 5G-Mobile Backhaul Networks: A Survey , 2018, J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl..

[17]  Mohamed-Slim Alouini,et al.  Hybrid Radio/Free-Space Optical Design for Next Generation Backhaul Systems , 2015, IEEE Transactions on Communications.

[18]  Mohamed-Slim Alouini,et al.  Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems , 2015, IEEE Wireless Communications.