Long-Term Relationships between Synaptic Tenacity, Synaptic Remodeling, and Network Activity

Long term time-lapse imaging reveals that individual synapses undergo significant structural remodeling not only when driven by activity, but also when network activity is absent, raising questions about how reliably individual synapses maintain connections.

[1]  G. Gross Simultaneous Single Unit Recording in vitro with a Photoetched Laser Deinsulated Gold Multimicroelectrode Surface , 1979, IEEE Transactions on Biomedical Engineering.

[2]  KM Harris,et al.  Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  M. Kennedy,et al.  The rat brain postsynaptic density fraction contains a homolog of the drosophila discs-large tumor suppressor protein , 1992, Neuron.

[4]  B. Voss,et al.  SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. , 1993, The Journal of biological chemistry.

[5]  P. De Camilli,et al.  Synaptic vesicle dynamics in living cultured hippocampal neurons visualized with CY3-conjugated antibodies directed against the lumenal domain of synaptotagmin , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  R. Nicoll,et al.  Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[8]  R. Huganir,et al.  Activity-Dependent Modulation of Synaptic AMPA Receptor Accumulation , 1998, Neuron.

[9]  D. Clapham,et al.  Molecular Determinants for Subcellular Localization of PSD-95 with an Interacting K+ Channel , 1999, Neuron.

[10]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[11]  H. Okado,et al.  Continual remodeling of postsynaptic density and its regulation by synaptic activity , 1999, Nature Neuroscience.

[12]  R. Nicoll,et al.  PSD-95 involvement in maturation of excitatory synapses. , 2000, Science.

[13]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[14]  A. Matus,et al.  Actin-based plasticity in dendritic spines. , 2000, Science.

[15]  G. Marrs,et al.  Rapid formation and remodeling of postsynaptic densities in developing dendrites , 2001, Nature Neuroscience.

[16]  O. Prange,et al.  Modular Transport of Postsynaptic Density-95 Clusters and Association with Stable Spine Precursors during Early Development of Cortical Neurons , 2001, The Journal of Neuroscience.

[17]  T. Kaneko,et al.  In Vivo Transduction of Central Neurons Using Recombinant Sindbis Virus , 2001, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[18]  T. Schikorski,et al.  Inactivity Produces Increases in Neurotransmitter Release and Synapse Size , 2001, Neuron.

[19]  松崎 政紀 Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001 .

[20]  Y. Ben-Ari Developing networks play a similar melody , 2001, Trends in Neurosciences.

[21]  H. Okado,et al.  Spine Formation and Correlated Assembly of Presynaptic and Postsynaptic Molecules , 2001, The Journal of Neuroscience.

[22]  T. Ogino,et al.  Effects of pCO2 on the CSF Turnover Rate in Rats Monitored by Gd-DTPA Enhanced T1-Weighted Magnetic Resonance Imaging. , 2001 .

[23]  Noam E. Ziv,et al.  The Dynamics of SAP90/PSD-95 Recruitment to New Synaptic Junctions , 2001, Molecular and Cellular Neuroscience.

[24]  Effects of pCO(2) on the CSF turnover rate in T(1)-weighted magnetic resonance imaging. , 2001, The Japanese journal of physiology.

[25]  G. Marrs,et al.  Hippocampal mossy fibers induce assembly and clustering of PSD95‐containing postsynaptic densities independent of glutamate receptor activation , 2001, The Journal of comparative neurology.

[26]  S. J. Martin,et al.  New life in an old idea: The synaptic plasticity and memory hypothesis revisited , 2002, Hippocampus.

[27]  David Baltimore,et al.  Germline Transmission and Tissue-Specific Expression of Transgenes Delivered by Lentiviral Vectors , 2002, Science.

[28]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[29]  N. Kasthuri,et al.  Long-term dendritic spine stability in the adult cortex , 2002, Nature.

[30]  Shimon Marom,et al.  Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy , 2002, Quarterly Reviews of Biophysics.

[31]  Idan Segev,et al.  The information efficacy of a synapse , 2002, Nature Neuroscience.

[32]  Jean-Claude Béïque,et al.  PSD‐95 regulates synaptic transmission and plasticity in rat cerebral cortex , 2003, The Journal of physiology.

[33]  M. Ehlers Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system , 2003, Nature neuroscience.

[34]  R. Nicoll,et al.  Postsynaptic Density-95 Mimics and Occludes Hippocampal Long-Term Potentiation and Enhances Long-Term Depression , 2003, The Journal of Neuroscience.

[35]  S. Okabe,et al.  The dynamic organization of postsynaptic proteins: translocating molecules regulate synaptic function , 2003, Current Opinion in Neurobiology.

[36]  A. Triller,et al.  The role of receptor diffusion in the organization of the postsynaptic membrane , 2003, Nature Reviews Neuroscience.

[37]  Z. Fu,et al.  PSD‐95 regulates NMDA receptors in developing cerebellar granule neurons of the rat , 2003, The Journal of physiology.

[38]  K. Sobue,et al.  Synchronized Formation and Remodeling of Postsynaptic Densities: Long-Term Visualization of Hippocampal Neurons Expressing Postsynaptic Density Proteins Tagged with Green Fluorescent Protein , 2003, The Journal of Neuroscience.

[39]  Mark F Bear,et al.  A Morphological Correlate of Synaptic Scaling in Visual Cortex , 2022 .

[40]  T. Bonhoeffer,et al.  Bidirectional Activity-Dependent Morphological Plasticity in Hippocampal Neurons , 2004, Neuron.

[41]  Takeharu Nagai,et al.  Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity , 2004, Nature Neuroscience.

[42]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[43]  R. Segev,et al.  Hidden neuronal correlations in cultured networks. , 2004, Physical review letters.

[44]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[45]  Nicholas R Wall,et al.  Regulation of Dendritic Protein Synthesis by Miniature Synaptic Events , 2004, Science.

[46]  E. Kandel,et al.  Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. Malinow,et al.  Postsynaptic Density 95 controls AMPA Receptor Incorporation during Long-Term Potentiation and Experience-Driven Synaptic Plasticity , 2004, The Journal of Neuroscience.

[48]  Mu-ming Poo,et al.  Shrinkage of Dendritic Spines Associated with Long-Term Depression of Hippocampal Synapses , 2004, Neuron.

[49]  Bartlett W. Mel,et al.  Cortical rewiring and information storage , 2004, Nature.

[50]  W. Gan,et al.  Development of Long-Term Dendritic Spine Stability in Diverse Regions of Cerebral Cortex , 2005, Neuron.

[51]  S. Green,et al.  Regulation of hippocampal synapse remodeling by epileptiform activity , 2005, Molecular and Cellular Neuroscience.

[52]  G. Shepherd,et al.  Transient and Persistent Dendritic Spines in the Neocortex In Vivo , 2005, Neuron.

[53]  J. Hell,et al.  Activity-driven postsynaptic translocation of CaMKII. , 2005, Trends in pharmacological sciences.

[54]  M. Corner,et al.  Dynamics and plasticity in developing neuronal networks in vitro. , 2005, Progress in brain research.

[55]  M. Segal Dendritic spines and long-term plasticity , 2005, Nature Reviews Neuroscience.

[56]  Yuzuru Takamura,et al.  Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives. , 2005, Journal of bioscience and bioengineering.

[57]  Nobuhiko Yamamoto,et al.  Activity Dependence of Cortical Axon Branch Formation: A Morphological and Electrophysiological Study Using Organotypic Slice Cultures , 2005, The Journal of Neuroscience.

[58]  Steve M. Potter,et al.  An extremely rich repertoire of bursting patterns during the development of cortical cultures , 2006, BMC Neuroscience.

[59]  G. Turrigiano,et al.  Postsynaptic Expression of Homeostatic Plasticity at Neocortical Synapses , 2005, The Journal of Neuroscience.

[60]  Karel Svoboda,et al.  Experience-dependent and cell-type-specific spine growth in the neocortex , 2006, Nature.

[61]  A. Craig,et al.  How to build a central synapse: clues from cell culture , 2006, Trends in Neurosciences.

[62]  Karel Svoboda,et al.  Rapid Redistribution of Synaptic PSD-95 in the Neocortex In Vivo , 2006, PLoS biology.

[63]  Eckart D Gundelfinger,et al.  Local Sharing as a Predominant Determinant of Synaptic Matrix Molecular Dynamics , 2006, PLoS biology.

[64]  Ann Marie Craig,et al.  Postsynaptic protein mobility in dendritic spines: Long-term regulation by synaptic NMDA receptor activation , 2006, Molecular and Cellular Neuroscience.

[65]  Kristen M. Harris,et al.  Plasticity-Induced Growth of Dendritic Spines by Exocytic Trafficking from Recycling Endosomes , 2006, Neuron.

[66]  K. Svoboda,et al.  Cell Type-Specific Structural Plasticity of Axonal Branches and Boutons in the Adult Neocortex , 2006, Neuron.

[67]  Danny Eytan,et al.  Dynamics and Effective Topology Underlying Synchronization in Networks of Cortical Neurons , 2006, The Journal of Neuroscience.

[68]  C. Gilbert,et al.  Axons and Synaptic Boutons Are Highly Dynamic in Adult Visual Cortex , 2006, Neuron.

[69]  Shigeo Okabe,et al.  Differential Control of Postsynaptic Density Scaffolds via Actin-Dependent and -Independent Mechanisms , 2006, The Journal of Neuroscience.

[70]  J. R. Newton,et al.  Remodeling of Synaptic Structure in Sensory Cortical Areas In Vivo , 2006, The Journal of Neuroscience.

[71]  Roberto Malinow,et al.  Glutamate Receptor Exocytosis and Spine Enlargement during Chemically Induced Long-Term Potentiation , 2006, The Journal of Neuroscience.

[72]  G. Davis Homeostatic control of neural activity: from phenomenology to molecular design. , 2006, Annual review of neuroscience.

[73]  Karel Svoboda,et al.  Locally dynamic synaptic learning rules in pyramidal neuron dendrites , 2007, Nature.

[74]  Daniel Choquet,et al.  The Interaction between Stargazin and PSD-95 Regulates AMPA Receptor Surface Trafficking , 2007, Neuron.

[75]  J. Bourne,et al.  Do thin spines learn to be mushroom spines that remember? , 2007, Current Opinion in Neurobiology.

[76]  B. Gähwiler,et al.  Synaptic modifications at the CA3–CA1 synapse after chronic AMPA receptor blockade in rat hippocampal slices , 2007, The Journal of physiology.

[77]  Bernardo L Sabatini,et al.  Anatomical and physiological plasticity of dendritic spines. , 2007, Annual review of neuroscience.

[78]  G. Turrigiano Homeostatic signaling: the positive side of negative feedback , 2007, Current Opinion in Neurobiology.

[79]  M. Sheng,et al.  Synaptic Accumulation of PSD-95 and Synaptic Function Regulated by Phosphorylation of Serine-295 of PSD-95 , 2007, Neuron.

[80]  Kevin Staras,et al.  Share and share alike: trading of presynaptic elements between central synapses , 2007, Trends in Neurosciences.

[81]  Dominique Muller,et al.  Activity-dependent PSD formation and stabilization of newly formed spines in hippocampal slice cultures. , 2008, Cerebral cortex.

[82]  A. El-Husseini,et al.  Excitation Control: Balancing PSD-95 Function at the Synapse , 2008, Frontiers in molecular neuroscience.

[83]  G. Turrigiano,et al.  Rapid Synaptic Scaling Induced by Changes in Postsynaptic Firing , 2008, Neuron.

[84]  H. Kasai,et al.  Principles of Long-Term Dynamics of Dendritic Spines , 2008, The Journal of Neuroscience.

[85]  Michael D. Ehlers,et al.  Structural plasticity with preserved topology in the postsynaptic protein network , 2008, Proceedings of the National Academy of Sciences.

[86]  C. Specht,et al.  Molecular dynamics of postsynaptic receptors and scaffold proteins , 2008, Current Opinion in Neurobiology.

[87]  S. Eichler,et al.  E-I Balance and Human Diseases – from Molecules to Networking , 2008, Frontiers in molecular neuroscience.

[88]  G. Knott,et al.  PSD-95 promotes synaptogenesis and multiinnervated spine formation through nitric oxide signaling , 2008, The Journal of cell biology.

[89]  Antoine Triller,et al.  The dynamics of synaptic scaffolds , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[90]  M. Frerking,et al.  Spine Expansion and Stabilization Associated with Long-Term Potentiation , 2008, The Journal of Neuroscience.

[91]  S. Dudek,et al.  Synapse elimination accompanies functional plasticity in hippocampal neurons , 2008, Proceedings of the National Academy of Sciences.

[92]  Xiaobing Chen,et al.  Organization of the core structure of the postsynaptic density , 2008, Proceedings of the National Academy of Sciences.

[93]  Dominique Muller,et al.  LTP Promotes a Selective Long-Term Stabilization and Clustering of Dendritic Spines , 2008, PLoS biology.

[94]  G. Turrigiano,et al.  Dynamics underlying synaptic gain between pairs of cortical pyramidal neurons , 2008, Developmental neurobiology.

[95]  R. Malenka,et al.  Destabilization of the Postsynaptic Density by PSD-95 Serine 73 Phosphorylation Inhibits Spine Growth and Synaptic Plasticity , 2008, Neuron.

[96]  M. Ehlers,et al.  Glutamate Receptor Dynamics in Dendritic Microdomains , 2008, Neuron.

[97]  Tobias Bonhoeffer,et al.  A Role for Local Calcium Signaling in Rapid Synaptic Partner Selection by Dendritic Filopodia , 2008, Neuron.