Bayesian nonparametric inference on quantile residual life function: Application to breast cancer data

There is often an interest in estimating a residual life function as a summary measure of survival data. For ease in presentation of the potential therapeutic effect of a new drug, investigators may summarize survival data in terms of the remaining life years of patients. Under heavy right censoring, however, some reasonably high quantiles (e.g., median) of a residual lifetime distribution cannot be always estimated via a popular nonparametric approach on the basis of the Kaplan-Meier estimator. To overcome the difficulties in dealing with heavily censored survival data, this paper develops a Bayesian nonparametric approach that takes advantage of a fully model-based but highly flexible probabilistic framework. We use a Dirichlet process mixture of Weibull distributions to avoid strong parametric assumptions on the unknown failure time distribution, making it possible to estimate any quantile residual life function under heavy censoring. Posterior computation through Markov chain Monte Carlo is straightforward and efficient because of conjugacy properties and partial collapse. We illustrate the proposed methods by using both simulated data and heavily censored survival data from a recent breast cancer clinical trial conducted by the National Surgical Adjuvant Breast and Bowel Project.

[1]  Steven W. Rust,et al.  A modification of Mood's median test for the generalized Behrens-Fisher problem , 1982 .

[2]  A. Kottas,et al.  Bayesian Semiparametric Modelling in Quantile Regression , 2009 .

[3]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[4]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[5]  A. Kottas,et al.  A Bayesian Nonparametric Approach to Inference for Quantile Regression , 2010 .

[6]  M. Krnjajic Bayesian Nonparametric Modeling in Quantile Regression , 2007 .

[7]  B. Mallick,et al.  A Bayesian Semiparametric Accelerated Failure Time Model , 1999, Biometrics.

[8]  W. Johnson,et al.  Modeling Regression Error With a Mixture of Polya Trees , 2002 .

[9]  W. Gilks,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 1992 .

[10]  L J Wei,et al.  Nonparametric estimation for the difference or ratio of median failure times. , 1993, Biometrics.

[11]  Alan E. Gelfand,et al.  Bayesian Semiparametric Regression for Median Residual Life , 2003 .

[12]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[13]  T. Ferguson Prior Distributions on Spaces of Probability Measures , 1974 .

[14]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[15]  M. Escobar Estimating Normal Means with a Dirichlet Process Prior , 1994 .

[16]  D. Oakes,et al.  The asymptotic information in censored survival data , 1977 .

[17]  D D Boos,et al.  Tests and confidence sets for comparing two mean residual life functions. , 1988, Biometrics.

[18]  Jason R. W. Merrick,et al.  A Bayesian Semiparametric Analysis of the Reliability and Maintenance of Machine Tools , 2003, Technometrics.

[19]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[20]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[21]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[22]  A. Kottas Nonparametric Bayesian survival analysis using mixtures of Weibull distributions , 2006 .

[23]  Thomas P. Hettmansperger,et al.  Two-Sample Inference for Median Survival Times Based on One-Sample Procedures for Censored Survival Data , 1990 .

[24]  Sin-Ho Jung,et al.  Nonparametric Inference on Median Residual Life Function , 2008, Biometrics.

[25]  D. V. van Dyk,et al.  Partially Collapsed Gibbs Samplers , 2008 .

[26]  Xiao-Li Meng,et al.  The Art of Data Augmentation , 2001 .

[27]  Lynn Kuo,et al.  Bayesian semiparametric inference for the accelerated failure‐time model , 1997 .

[28]  A. Gelfand,et al.  Bayesian Semiparametric Median Regression Modeling , 2001 .

[29]  D. Heitjan,et al.  Predicting analysis times in randomized clinical trials , 2001, Statistics in medicine.

[30]  Jong-Hyeon Jeong,et al.  Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. , 2002, The New England journal of medicine.

[31]  C. Redmond,et al.  A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. , 1989, The New England journal of medicine.

[32]  D. V. van Dyk,et al.  Partially Collapsed Gibbs Samplers: Illustrations and Applications , 2009 .

[33]  R. Koenker,et al.  Regression Quantiles , 2007 .

[34]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[35]  D. Cox Regression Models and Life-Tables , 1972 .

[36]  Daniel F Heitjan,et al.  Weibull prediction of event times in clinical trials , 2008, Pharmaceutical statistics.

[37]  Alan E. Gelfand,et al.  A Computational Approach for Full Nonparametric Bayesian Inference Under Dirichlet Process Mixture Models , 2002 .