Furstenberg Theory of Mixed Random-Quasiperiodic Cocycles

We derive a criterion for the positivity of the maximal Lyapunov exponent of generic mixed random-quasiperiodic linear cocycles, a model introduced in a previous work. This result is applicable to cocycles corresponding to Schrödinger operators with randomly perturbed quasiperiodic potentials. Moreover, we establish an average uniform convergence to the Lyapunov exponent in the Oseledets theorem.

[1]  W. Fulton,et al.  Foundations of Ergodic Theory , 2016 .

[2]  H. Furstenberg Noncommuting random products , 1963 .

[3]  H. Furstenberg,et al.  Random matrix products and measures on projective spaces , 1983 .

[4]  B. Lautrup,et al.  Products of random matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Jamerson Bezerra,et al.  Random product of quasi-periodic cocycles , 2019, Proceedings of the American Mathematical Society.

[6]  Yiqian Wang,et al.  Examples of Discontinuity of Lyapunov Exponent in Smooth Quasi-Periodic Cocycles , 2012, 1202.0580.

[7]  N. Monod,et al.  Product groups acting on manifolds , 2007, 0710.3119.

[8]  Robert J. Zimmer,et al.  Ergodic Theory and Semisimple Groups , 1984 .

[9]  E. Breuillard,et al.  On dense free subgroups of Lie groups , 2002, math/0206236.

[10]  Boris Hasselblatt,et al.  Handbook of Dynamical Systems , 2010 .