Fixed lag smoothers for carrier phase and frequency tracking

The application of fixed lag smoothing algorithms are presented for the problem of estimation of the phase and frequency of a sinusoidal carrier received in the presence of process noise and additive observation noise. A suboptimal structure consists of a phase-locked loop (PLL) followed by a post loop correction to the phase and frequency estimates. When the PLL is operating under a high signal-to-noise ratio, the phase detector is approximately linear, and the smoother equations then correspond to the optimal linear equations for an equivalent linear signal model. The performance of such a smoother can be predicted by the linear filtering theory. However, if the PLL is operating near the threshold region of the signal to noise ratio, the phase detector cannot be assumed to be linear. Then the actual performance of the smoother can significantly differ from that predicted by linear filtering theory. Both the theoretical and simulated performance of such smoothers derived on the basis of various models for the phase of frequency processes are presented.