Maximum privacy without coherence, zero-error

We study the possible difference between the quantum and the private capacities of a quantum channel in the zero-error setting. For a family of channels introduced by Leung et al. [Phys. Rev. Lett. 113, 030512 (2014)], we demonstrate an extreme difference: the zero-error quantum capacity is zero, whereas the zero-error private capacity is maximum given the quantum output dimension.

[1]  Maksim E. Shirokov,et al.  On superactivation of one-shot quantum zero-error capacity and the related property of quantum measurements , 2014, Probl. Inf. Transm..

[2]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[3]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[4]  M. E. Shirokov,et al.  On superactivation of one-shot zero-error quantum capacity and the related property of quantum measurements , 2013, 1312.3586.

[5]  Francisco Marcos de Assis,et al.  Zero-Error Capacity of a Quantum Channel , 2004, ICT.

[6]  Li Liu,et al.  Near-linear constructions of exact unitary 2-designs , 2015, Quantum Inf. Comput..

[7]  Noga Alon,et al.  The Shannon Capacity of a Union , 1998, Comb..

[8]  Maksim E. Shirokov On channels with positive quantum zero-error capacity having vanishing n-shot capacity , 2015, Quantum Inf. Process..

[9]  J. Oppenheim,et al.  Secure key from bound entanglement. , 2003, Physical Review Letters.

[10]  Graeme Smith,et al.  An Extreme Form of Superactivation for Quantum Zero-Error Capacities , 2009, IEEE Transactions on Information Theory.

[11]  Tatiana Shulman,et al.  Communications in Mathematical Physics On Superactivation of Zero-Error Capacities and Reversibility of a Quantum Channel , 2015 .

[12]  Runyao Duan,et al.  Distinguishability of Quantum States by Positive Operator-Valued Measures With Positive Partial Transpose , 2012, IEEE Transactions on Information Theory.

[13]  Ke Li,et al.  Maximal privacy without coherence. , 2014, Physical review letters.

[14]  Simone Severini,et al.  Zero-error communication via quantum channels, non-commutative graphs and a quantum Lovasz theta function , 2010, ArXiv.

[15]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[16]  Jianxin Chen,et al.  Superactivation of the Asymptotic Zero-Error Classical Capacity of a Quantum Channel , 2009, IEEE Transactions on Information Theory.

[17]  Runyao Duan,et al.  Super-Activation of Zero-Error Capacity of Noisy Quantum Channels , 2009, 0906.2527.

[18]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[19]  Francisco M. de Assis,et al.  Quantum states characterization for the zero-error capacity , 2006 .

[20]  Salman Beigi,et al.  On the Complexity of Computing Zero-Error and Holevo Capacity of Quantum Channels , 2007, 0709.2090.

[21]  Rex A. C. Medeiros,et al.  QUANTUM ZERO-ERROR CAPACITY , 2005 .

[22]  Francisco M. de Assis,et al.  Zero-error capacity of a quantum channel , 2004 .

[23]  Simone Severini,et al.  Zero-Error Communication via Quantum Channels, Noncommutative Graphs, and a Quantum Lovász Number , 2010, IEEE Transactions on Information Theory.

[24]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.