Intermediate phases in sodium intercalation into MoS2 nanosheets and their implications for sodium-ion batteries

[1]  Di Zhang,et al.  A high-performance anode material based on FeMnO3/graphene composite , 2017 .

[2]  Muratahan Aykol,et al.  High-throughput computational design of cathode coatings for Li-ion batteries , 2016, Nature Communications.

[3]  C. Wolverton,et al.  Electrochemistry of Selenium with Sodium and Lithium: Kinetics and Reaction Mechanism. , 2016, ACS nano.

[4]  Yizhou Zhu,et al.  Visualizing non-equilibrium lithiation of spinel oxide via in situ transmission electron microscopy , 2016, Nature Communications.

[5]  L. Luo,et al.  Size-controlled Intercalation to Conversion Transition in Lithiation of Transition Metal Chalcogenides–NbSe3 , 2016, Microscopy and Microanalysis.

[6]  Zhiguo Wang,et al.  Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide , 2015, Scientific Reports.

[7]  Anton Van der Ven,et al.  Factors Contributing to Path Hysteresis of Displacement and Conversion Reactions in Li Ion Batteries , 2015 .

[8]  Liping Wang,et al.  Atomic-Scale Probing of the Dynamics of Sodium Transport and Intercalation-Induced Phase Transformations in MoS₂. , 2015, ACS nano.

[9]  M. Doeff,et al.  Sodiation Kinetics of Metal Oxide Conversion Electrodes: A Comparative Study with Lithiation. , 2015, Nano letters.

[10]  Yan Yao,et al.  Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage. , 2015, Nano letters.

[11]  F. Mashayek,et al.  Twin boundary-assisted lithium ion transport. , 2015, Nano letters.

[12]  Nikhil V. Medhekar,et al.  Ab initio characterization of layered MoS2 as anode for sodium-ion batteries , 2014 .

[13]  Liquan Chen,et al.  Atomic-scale clarification of structural transition of MoS₂ upon sodium intercalation. , 2014, ACS nano.

[14]  P. Bruce,et al.  Lithium-ion diffusion mechanisms in the battery anode material Li(1+x)V(1-x)O₂. , 2014, Physical chemistry chemical physics : PCCP.

[15]  D. Wexler,et al.  Reversible sodium storage via conversion reaction of a MoS₂-C composite. , 2014, Chemical communications.

[16]  C. Walle,et al.  First-principles study of van der Waals interactions in MoS2 and MoO3 , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  Peng Wang,et al.  In Situ TEM on the Reversibility of Nanosized Sn Anodes during the Electrochemical Reaction , 2014 .

[18]  Xiao‐Qing Yang,et al.  Sodiation via heterogeneous disproportionation in FeF2 electrodes for sodium-ion batteries. , 2014, ACS nano.

[19]  Gyeong Sook Bang,et al.  Effective liquid-phase exfoliation and sodium ion battery application of MoS2 nanosheets. , 2014, ACS applied materials & interfaces.

[20]  Xuedong Bai,et al.  Atomic mechanism of dynamic electrochemical lithiation processes of MoS₂ nanosheets. , 2014, Journal of the American Chemical Society.

[21]  Anton Van der Ven,et al.  Designing the next generation high capacity battery electrodes , 2014 .

[22]  Gurpreet Singh,et al.  MoS2/graphene composite paper for sodium-ion battery electrodes. , 2014, ACS nano.

[23]  Farzad Mashayek,et al.  Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials. , 2013, ACS nano.

[24]  Christopher M Wolverton,et al.  High‐Throughput Computational Screening of New Li‐Ion Battery Anode Materials , 2013 .

[25]  Yi Cui,et al.  In situ TEM of two-phase lithiation of amorphous silicon nanospheres. , 2013, Nano letters.

[26]  Yi Cui,et al.  Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy , 2012, Advanced materials.

[27]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[28]  Gus L. W. Hart,et al.  Generating derivative structures at a fixed concentration , 2012 .

[29]  G. Seifert,et al.  Density-functional study of LixMoS2 intercalates (0<=x<=1) , 2012, 1205.5220.

[30]  Fei Gao,et al.  In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. , 2012, Nano letters.

[31]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[32]  Lev Rapoport,et al.  Controlled doping of MS2 (M=W, Mo) nanotubes and fullerene-like nanoparticles. , 2012, Angewandte Chemie.

[33]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[34]  Jaephil Cho,et al.  MoS₂ nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. , 2011, Nano letters.

[35]  Jian Yu Huang,et al.  In situ TEM electrochemistry of anode materials in lithium ion batteries , 2011 .

[36]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[37]  John P. Sullivan,et al.  In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode , 2010, Science.

[38]  Lelia Cosimbescu,et al.  Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries , 2010 .

[39]  Gus L. W. Hart,et al.  Algorithm for Generating Derivative Structures , 2008 .

[40]  R. Kirk,et al.  Observation of Giant Diffusivity Along Dislocation Cores , 2008, Science.

[41]  G. Ouvrard,et al.  Synergetic theoretical and experimental structure determination of nanocrystalline materials: study of LiMoS2 , 2003 .

[42]  Astronomy,et al.  Structure of nanocrystalline materials using atomic pair distribution function analysis: Study of LiMoS2 , 2001, cond-mat/0106303.

[43]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[44]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[45]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[46]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[47]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[48]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[49]  C. Julien,et al.  Electrochemical studies of disordered MoS2 as cathode material in lithium batteries , 1992 .

[50]  L. Mattheiss Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. , 1973 .

[51]  R. Somoano,et al.  Alkali metal intercalates of molybdenum disulfide. , 1973 .

[52]  V. Dravid,et al.  Exfoliated MoS2 nanosheets confined in 3-D hierarchical carbon nanotube@graphene architecture with superior sodium-ion storage , 2017 .

[53]  Jun Lu,et al.  Ultrafast and Highly Reversible Sodium Storage in Zinc‐Antimony Intermetallic Nanomaterials , 2016 .

[54]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[55]  Chunsheng Wang,et al.  An advanced MoS2 /carbon anode for high-performance sodium-ion batteries. , 2015, Small.

[56]  E. Benavente,et al.  Intercalation chemistry of molybdenum disulfide , 2002 .

[57]  M. Kanatzidis,et al.  Encapsulation of polymers into MoS2 and metal to insulator transition in metastable MoS2 , 1993 .

[58]  C. Julien Optical Spectroscopies of Lithium-Intercalated Compounds , 1992 .

[59]  F. Wypych,et al.  1T-MoS2, a new metallic modification of molybdenum disulfide , 1992 .