Statistical efficiency of correlation-based methods for ARMA spectral estimation

The paper considers bounds on the statistical efficiency of the estimators of the poles and zeros of an ARMA process based on estimates of the process autocorrelation function. Special attention is paid to autoregressive and autoregressive plus white noise processes. A measure of the statistical variability of the estimates is introduced as the ratio of the Cramer-Rao bounds on the generalised variances of estimates based on the unreduced data and on the autocorrelation function. Numerical values of this measure are presented for several processes of interest. Estimator performance is then related to pole-zero locations and the signal/noise ratio.

[1]  L. Scharf,et al.  A note on covariance-invariant digital filter design and autoregressive moving average spectrum analysis , 1979 .

[2]  J. Cadzow,et al.  Spectral estimation: An overdetermined rational model equation approach , 1982, Proceedings of the IEEE.

[3]  Mostafa Kaveh,et al.  A criterion for selecting information- preserving data reductions for use in the design of multiple-parameter estimators , 1983, IEEE Trans. Inf. Theory.

[4]  T. Hsia,et al.  On a Method for Estimating Power Spectra , 1967 .

[5]  P. Shaman On the inverse of the covariance matrix for an autoregressive-moving average process , 1973 .

[6]  K. Steiglitz,et al.  Power-spectrum identification in terms of rational models , 1967 .

[7]  I. Konvalinka,et al.  Simultaneous estimation of poles and zeros in speech analysis and ITIF-iterative inverse filtering algorithm , 1979 .

[8]  Steven Kay,et al.  A new ARMA spectral estimator , 1980 .

[9]  H. Sakai,et al.  Recursive parameter estimation of an autoregressive process disturbed by white noise , 1979 .

[10]  H. Tokumaru,et al.  Statistical analysis of a spectral estimator for ARMA processes , 1980 .

[11]  P. Newbold The exact likelihood function for a mixed autoregressive-moving average process , 1974 .

[12]  Calyampudi Radhakrishna Rao,et al.  Linear Statistical Inference and its Applications , 1967 .

[13]  M. Kaveh High resolution spectral estimation for noisy signals , 1979 .

[14]  Mátyás Arató,et al.  On the Sufficient Statistics for Stationary Gaussian Random Processes , 1961 .

[15]  E. Hannan The estimation of mixed moving average autoregressive systems , 1969 .

[16]  A. M. Walker Large-sample estimation of parameters for autoregressive processes with moving-average residuals , 1962 .

[17]  Daniel Graupe,et al.  Identification of autoregressive moving-average parameters of time series , 1975 .

[18]  Mostafa Kaveh,et al.  On some suboptimum ARMA spectral estimators , 1980 .

[19]  H. Akaike Maximum likelihood identification of Gaussian autoregressive moving average models , 1973 .