Integrated silicon nitride electro-optic modulators with atomic layer deposited overlays.

Silicon nitride (SiN) is currently the most prominent CMOS-compatible platform for photonics at wavelengths <1  μm. However, realizing fast electro-optic (EO) modulators, the key components of any integrated optics platform, remains challenging in SiN. Modulators based on the plasma dispersion effect, as in silicon, are not available. Despite the fact that significant second-harmonic generation has been reported for silicon-rich SiN, no efficient Pockels effect-based modulators have been demonstrated. Here we report the back-end CMOS-compatible atomic layer deposition (ALD) of conventional second-order nonlinear crystals, zinc oxide, and zinc sulfide, on existing SiN waveguide circuits. Using these ALD overlays, we demonstrate EO modulation in ring resonators.

[1]  Zach DeVito,et al.  Opt , 2017 .

[2]  M. Larciprete,et al.  Second harmonic generation from ZnO films and nanostructures , 2015 .

[3]  Maarit Karppinen,et al.  Atomic layer deposition of ZnO: a review , 2014 .

[4]  S. Ho,et al.  Organic electro-optic modulator using transparent conducting oxides as electrodes. , 2005, Optics express.

[5]  Chris G. H. Roeloffzen,et al.  Programmable photonic signal processor chip for radiofrequency applications , 2015, 1505.00094.

[6]  P. Absil,et al.  Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators. , 2014, Optics express.

[7]  R. Baets,et al.  Expanding the Silicon Photonics Portfolio With Silicon Nitride Photonic Integrated Circuits , 2017, Journal of Lightwave Technology.

[8]  Yeshaiahu Fainman,et al.  Observation of second-harmonic generation in silicon nitride waveguides through bulk nonlinearities. , 2016, Optics express.

[9]  C. Detavernier,et al.  Plasma enhanced atomic layer deposition of zinc sulfide thin films , 2017 .

[10]  P. Zaumseil High-resolution characterization of the forbidden Si 200 and Si 222 reflections , 2015, Journal of applied crystallography.

[11]  C. Koos Nanophotonic devices for linear and nonlinear optical signal processing , 2010 .

[12]  A. Cingolani,et al.  Dispersion of the linear electrooptic coefficient in ZnS , 1980 .

[13]  Muhammad Muneeb,et al.  ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy , 2018, APL Photonics.

[14]  Jiho Joo,et al.  Cost-Effective $2\times 2$ Silicon Nitride Mach-Zehnder Interferometric (MZI) Thermo-Optic Switch , 2018, IEEE Photonics Technology Letters.

[15]  C. Xiong,et al.  Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing. , 2012, Nano letters.

[16]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[17]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[18]  M. Wegener,et al.  Second‐Harmonic Generation from ZnO/Al2O3 Nanolaminate Optical Metamaterials Grown by Atomic‐Layer Deposition , 2016 .

[19]  P. Dumon,et al.  Silicon microring resonators , 2012 .

[20]  M. Thomas,et al.  Highly tunable electrical properties in undoped ZnO grown by plasma enhanced thermal-atomic layer deposition. , 2012, ACS applied materials & interfaces.

[21]  Ivan P. Kaminow,et al.  Electrooptic light modulators , 1966 .

[22]  K. Neyts,et al.  Nanophotonic Pockels modulators on a silicon nitride platform , 2018, Nature Communications.

[23]  David B. Cole,et al.  Coherent solid-state LIDAR with silicon photonic optical phased arrays. , 2017, Optics letters.

[24]  Y. H. D. Lee,et al.  Back-End Deposited Silicon Photonics for Monolithic Integration on CMOS , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  L. D. Negro,et al.  Generation of second harmonic radiation from sub-stoichiometric silicon nitride thin films , 2013 .