Differential role of 5-HT1A and 5-HT1B receptors on the antinociceptive and antidepressant effect of tramadol in mice

[1]  J. Micó,et al.  The role of 5-HT1A receptors in research strategy for extensive pain treatment. , 2006, Current topics in medicinal chemistry.

[2]  J. Micó,et al.  In vivo effect of tramadol on locus coeruleus neurons is mediated by α2-adrenoceptors and modulated by serotonin , 2006, Neuropharmacology.

[3]  P. Celada,et al.  Strategies for producing faster acting antidepressants. , 2005, Drug discovery today.

[4]  A. Eschalier,et al.  Spinal 5-HT1A receptors differentially influence nociceptive processing according to the nature of the noxious stimulus in rats: effect of WAY-100635 on the antinociceptive activities of paracetamol, venlafaxine and 5-HT , 2005, Pain.

[5]  J. Micó,et al.  Role of 5-HT1A and 5-HT1B receptors in the antinociceptive effect of tramadol. , 2005, European journal of pharmacology.

[6]  M. Kuśmider,et al.  Long-term exposure of rats to tramadol alters brain dopamine and alpha 1-adrenoceptor function that may be related to antidepressant potency. , 2004, European journal of pharmacology.

[7]  Y. Sari Serotonin1B receptors: from protein to physiological function and behavior , 2004, Neuroscience & Biobehavioral Reviews.

[8]  J. Micó,et al.  Antidepressant-Like Effect of tramadol and its Enantiomers in Reserpinized Mice: Comparativestudy with Desipramine, Fluvoxamine, Venlafaxine and Opiates , 2004, Journal of psychopharmacology.

[9]  M. Kuśmider,et al.  Effects of tramadol on α2-adrenergic receptors in the rat brain , 2004, Brain Research.

[10]  F. Colpaert,et al.  Role of spinal 5‐HT1A receptors in morphine analgesia and tolerance in rats , 2004, European journal of pain.

[11]  E. Tatarczyńska,et al.  Effect of combined administration of 5-HT1A or 5-HT1B/1D receptor antagonists and antidepressants in the forced swimming test. , 2004, European journal of pharmacology.

[12]  M. Kuśmider,et al.  Effects of tramadol on alpha2-adrenergic receptors in the rat brain. , 2004, Brain research.

[13]  J. Micó,et al.  The Role of 5-HT1A/B Autoreceptors in the Antinociceptive Effect of Systemic Administration of Acetaminophen , 2003, Anesthesiology.

[14]  William D. Willis,et al.  Serotonin receptors 5-HT1A and 5-HT3 reduce hyperexcitability of dorsal horn neurons after chronic spinal cord hemisection injury in rat , 2003, Experimental Brain Research.

[15]  J. Micó,et al.  Antidepressant-like effects of tramadol and other central analgesics with activity on monoamines reuptake, in helpless rats. , 2002, Life sciences.

[16]  D Le Bars,et al.  Animal models of nociception. , 2001, Pharmacological reviews.

[17]  Keiji Ishizaki,et al.  Effects of 5-HT2 and 5-HT3 receptors on the modulation of nociceptive transmission in rat spinal cord according to the formalin test. , 2001, European journal of pharmacology.

[18]  J. Stamford,et al.  Effects of chronic tramadol on pre- and post-synaptic measures of monoamine function , 2001, Journal of psychopharmacology.

[19]  D. Jourdan,et al.  Potentiation of the antinociceptive effect of clomipramine by a 5‐ht1A antagonist in neuropathic pain in rats , 2001, British journal of pharmacology.

[20]  N. Shapira,et al.  Treatment of refractory major depression with tramadol monotherapy. , 2001, The Journal of clinical psychiatry.

[21]  C. Spencer The efficacy of intramuscular tramadol as a rapid-onset antidepressant. , 2000, The Australian and New Zealand journal of psychiatry.

[22]  J. Micó,et al.  Pindolol, a beta-adrenoceptor blocker/5-hydroxytryptamine1A/1B antagonist, enhances the analgesic effect of tramadol , 2000, Pain.

[23]  Colin Davidson,et al.  Control of dorsal raphé 5-HT function by multiple 5-HT1 autoreceptors: parallel purposes or pointless plurality? , 2000, Trends in Neurosciences.

[24]  C. Montigny,et al.  Potentiation by (-)Pindolol of the Activation of Postsynaptic 5-HT1A Receptors Induced by Venlafaxine , 2000, Neuropsychopharmacology.

[25]  D. Vergé,et al.  Serotoninergic neurons and serotonin receptors: gains from cytochemical approaches , 2000, Journal of Chemical Neuroanatomy.

[26]  F. Artigas,et al.  Postsynaptic 5-HT1A receptors control 5-HT release in the rat medial prefrontal cortex. , 1999, Neuroreport.

[27]  P. Keck,et al.  Rapid remission of OCD with tramadol hydrochloride. , 1999, The American journal of psychiatry.

[28]  C. de Montigny,et al.  Long-Term Antidepressant Treatments Result in a Tonic Activation of Forebrain 5-HT1A Receptors , 1998, The Journal of Neuroscience.

[29]  J. Micó,et al.  Tramadol induces antidepressant-type effects in mice. , 1998, Life sciences.

[30]  J. Markowitz,et al.  Venlafaxine-tramadol similarities. , 1998, Medical hypotheses.

[31]  J. Stamford,et al.  Actions of tramadol, its enantiomers and principal metabolite, O-desmethyltramadol, on serotonin (5-HT) efflux and uptake in the rat dorsal raphe nucleus. , 1997, British journal of anaesthesia.

[32]  H. Westenberg,et al.  Postsynaptic 5-HT1A receptors mediate 5-hydroxytryptamine release in the amygdala through a feedback to the caudal linear raphe. , 1997, European journal of pharmacology.

[33]  P. Keck,et al.  Open‐label pilot study of tramadol hydrochloride in treatment‐refractory obsessive‐compulsive disorder , 1997, Depression and anxiety.

[34]  Allan Fletcher,et al.  Electrophysiological, biochemical, neurohormonal and behavioural studies with WAY-100635, a potent, selective and silent 5-HT1A receptor antagonist , 1995, Behavioural Brain Research.

[35]  J. Stamford Descending control of pain. , 1995, British journal of anaesthesia.

[36]  Qing-ping Wang,et al.  The dorsal raphe: An important nucleus in pain modulation , 1994, Brain Research Bulletin.

[37]  J. Sawynok,et al.  Spinal supersensitivity to 5-HT1, 5-HT2 and 5-HT3 receptor agonists following 5,7-dihydroxytryptamine. , 1994, European journal of pharmacology.

[38]  S. Barasi,et al.  The actions of 5-HT1 agonists and antagonists on nociceptive processing in the rat spinal cord: results from behavioural and electrophysiological studies , 1994, Brain Research.

[39]  J. Han,et al.  Serotonin receptor subtypes in spinal antinociception in the rat. , 1994, The Journal of pharmacology and experimental therapeutics.

[40]  A. Alhaider,et al.  Differential roles of 5-hydroxytryptamine1A and 5-hydroxytryptamine1B receptor subtypes in modulating spinal nociceptive transmission in mice. , 1993, The Journal of pharmacology and experimental therapeutics.

[41]  B. Driessen,et al.  Effects of the central analgesic tramadol on the uptake and release of noradrenaline and dopamine in vitro , 1993, British journal of pharmacology.

[42]  P. Eide,et al.  The role of spinal cord 5-HT1A and 5-HT1B receptors in the modulation of a spinal nociceptive reflex , 1990, Brain Research.

[43]  J. Schneider,et al.  Receptor binding, analgesic and antitussive potency of tramadol and other selected opioids. , 1988, Arzneimittel-Forschung.

[44]  G. Aghajanian,et al.  Electrophysiological responses of serotoninergic dorsal raphe neurons to 5‐HT1A and 5‐HT1B agonists , 1987, Synapse.

[45]  M. Zimmermann,et al.  Ethical guidelines for investigations of experimental pain in conscious animals , 1983, Pain.

[46]  R. Porsolt,et al.  Depression: a new animal model sensitive to antidepressant treatments , 1977, Nature.

[47]  G. Woolfe,et al.  THE EVALUATION OF THE ANALGESIC ACTION OF PETHIDINE HYDROCHLORIDE (DEMEROL) , 1944 .