RSM-based Investigation of Cesium Removal from Aqueous Media with Nanocomposites Prepared by Spherical Mesoporous Silica and Potassium Metal Hexacyanoferrate

P.O.Box

[1]  Jianlong Wang,et al.  Adsorption isotherm models: Classification, physical meaning, application and solving method. , 2020, Chemosphere.

[2]  Manman Wang,et al.  Study on adsorption mechanism of silicate adsorbents with different morphologies and pore structures towards formaldehyde in water , 2020 .

[3]  Abhra Pratip Ray,et al.  Optimization of process parameters using response surface methodology: A review , 2020, Materials Today: Proceedings.

[4]  C. Park,et al.  Hollow flower-like titanium ferrocyanide structure for the highly efficient removal of radioactive cesium from water , 2020 .

[5]  A. Ifelebuegu,et al.  Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste , 2020, Processes.

[6]  M. A. Betiha,et al.  Polyvinylpyrrolidone-Aminopropyl-SBA-15 schiff Base hybrid for efficient removal of divalent heavy metal cations from wastewater. , 2020, Journal of hazardous materials.

[7]  Kune-Woo Lee,et al.  Prussian Blue Decoration on Polyacrylonitrile Nanofibers Using Polydopamine for Effective Cs Ion Removal , 2020 .

[8]  G. C. Saha,et al.  Development of synthetic zeolites from bio-slag for cesium adsorption: Kinetic, isotherm and thermodynamic studies , 2020 .

[9]  Zan Chen,et al.  Functionalization of SBA-15 mesoporous materials with 2-acetylthiophene for adsorption of Cr(III) ions , 2020 .

[10]  Yuanyuan Zhang,et al.  Synthesis of pyridyl Schiff base functionalized SBA-15 mesoporous silica for the removal of Cu(II) and Pb(II) from aqueous solution , 2019, Journal of Sol-Gel Science and Technology.

[11]  B. Guo,et al.  Recent advances of SBA-15-based composites as the heterogeneous catalysts in water decontamination: A mini-review. , 2019, Journal of environmental management.

[12]  O. Golubev,et al.  Alkali Earth Catalysts Based on Mesoporous MCM-41 and Al-SBA-15 for Sulfone Removal from Middle Distillates , 2019, ACS omega.

[13]  A. M. S. El-Din,et al.  Nano-sized Prussian blue immobilized costless agro-industrial waste for the removal of cesium-137 ions , 2019, Environmental Science and Pollution Research.

[14]  Qinqin Tao,et al.  Adsorption of cesium on mesoporous SBA-15 material containing embedded copper hexacyanoferrate , 2019, Journal of Radioanalytical and Nuclear Chemistry.

[15]  Jianlong Wang,et al.  Removal of cesium ions from aqueous solutions using various separation technologies , 2019, Reviews in Environmental Science and Bio/Technology.

[16]  Jianlong Wang,et al.  Algal sorbent derived from Sargassum horneri for adsorption of cesium and strontium ions: equilibrium, kinetics, and mass transfer , 2019, Applied Microbiology and Biotechnology.

[17]  Jianlong Wang,et al.  Metal hexacyanoferrates-based adsorbents for cesium removal , 2018, Coordination Chemistry Reviews.

[18]  R. Narayan,et al.  Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances , 2018, Pharmaceutics.

[19]  M. R. Alavi Moghaddam,et al.  Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. , 2018, The Science of the total environment.

[20]  M. Parvini,et al.  Adsorption of heavy metals (Cu2+ and Zn2+) on novel bifunctional ordered mesoporous silica: Optimization by response surface methodology , 2018 .

[21]  H. Ghasemi,et al.  Tungsten substituted molybdophosphoric acid loaded on various types of mesoporous silica SBA-15 for application of thorium ion adsorption , 2017 .

[22]  D. Harbottle,et al.  Solvent-assisted synthesis of potassium copper hexacyanoferrate embedded 3D-interconnected porous hydrogel for highly selective and rapid cesium ion removal , 2017 .

[23]  B. Mamba,et al.  Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. , 2016, International journal of biological macromolecules.

[24]  G. R. Rao,et al.  Textural and morphological studies of transition metal doped SBA-15 by co-condensation method , 2015, Journal of Chemical Sciences.

[25]  A. Mahjoub,et al.  Catalytic performance of vanadium-substituted molybdophosphoric acid supported on zirconium modified mesoporous silica in oxidative desulfurization , 2015 .

[26]  H. Tavakoli,et al.  Zinc hexacyanoferrate loaded mesoporous MCM-41 as a new adsorbent for cesium: equilibrium, kinetic and thermodynamic studies , 2014 .

[27]  Duu-Jong Lee,et al.  Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. , 2014, Bioresource technology.

[28]  J. Fasihi,et al.  Synthesis, Characterization, and Cesium Sorption Performance of Potassium Nickel Hexacyanoferrate-Loaded Granular Activated Carbon , 2014 .

[29]  D. Azevedo,et al.  Synthesis and characterization of ordered mesoporous silica (SBA-15 and SBA-16) for adsorption of biomolecules , 2013 .

[30]  H. Aghayan,et al.  Synthesis and characterization of cesium molybdo vanado phosphate immobilized on platelet SBA-15: An efficient inorganic composite ion-exchanger for gadolinium ion sorption , 2013 .

[31]  Z. Alothman A Review: Fundamental Aspects of Silicate Mesoporous Materials , 2012, Materials.

[32]  K. Müller,et al.  Synthesis and characterization of surface modified SBA-15 silica materials and their application in chromatography. , 2011, Journal of chromatography. A.

[33]  R. Zarghami,et al.  Adsorption of cesium on copper hexacyanoferrate–PAN composite ion exchanger from aqueous solution , 2011 .

[34]  R. Zarghami,et al.  Adsorption characteristic of 137Cs from aqueous solution using PAN-based sodium titanosilicate composite , 2010 .

[35]  S. Ng,et al.  Synthesis of large pore-diameter SBA-15 mesostructured spherical silica and its application in ultra-high-performance liquid chromatography. , 2009, Journal of chromatography. A.

[36]  M. Bezerra,et al.  Response surface methodology (RSM) as a tool for optimization in analytical chemistry. , 2008, Talanta.

[37]  M. Jaroniec,et al.  Characterization of the Porous Structure of SBA-15 , 2000 .

[38]  Dongyuan Zhao,et al.  Morphological Control of Highly Ordered Mesoporous Silica SBA-15 , 2000 .

[39]  Y. Ho,et al.  Pseudo-second order model for sorption processes , 1999 .

[40]  Fredrickson,et al.  Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores , 1998, Science.

[41]  William J. Hill,et al.  A Review of Response Surface Methodology: A Literature Survey* , 1966 .

[42]  C. Aring,et al.  A CRITICAL REVIEW , 1939, Journal of neurology and psychiatry.

[43]  C. Raggi,et al.  Mini review , 2004 .

[44]  N. L. Johnson,et al.  Breakthroughs in Statistics , 1992 .

[45]  G. Blanchard,et al.  Removal of heavy metals from waters by means of natural zeolites , 1984 .

[46]  L. Schlosser [Literature survey]. , 1970, Archiv fur Toxikologie.

[47]  J. Galloway A Review of the , 1901 .