On the Spectrum of the Dirac Operator and the Existence of Discrete Eigenvalues for the Defocusing Nonlinear Schrödinger Equation

We revisit the scattering problem for the defocusing nonlinear Schrodinger equation with constant, nonzero boundary conditions at infinity, i.e., the eigenvalue problem for the Dirac operator with nonzero rest mass. By considering a specific kind of piecewise constant potentials we address and clarify two issues, concerning: (i) the (non)existence of an area theorem relating the presence/absence of discrete eigenvalues to an appropriate measure of the initial condition; and (ii) the existence of a contribution to the asymptotic phase difference of the potential from the continuous spectrum.

[1]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[2]  C. Mee,et al.  Wave operators for the matrix Zakharov-Shabat system , 2010 .

[3]  R. Dodd,et al.  Review: L. D. Faddeev and L. A. Takhtajan, Hamiltonian methods in the theory of solitons , 1988 .

[4]  Non‐self‐adjoint Zakharov–Shabat operator with a potential of the finite asymptotic values. I. Direct spectral and scattering problems , 1981 .

[5]  C. Hamner,et al.  Multiple dark-bright solitons in atomic Bose-Einstein condensates , 2011, 1104.4359.

[6]  J. Satsuma,et al.  B Initial Value Problems of One-Dimensional self-Modulation of Nonlinear Waves in Dispersive Media (Part V. Initial Value Problems) , 1975 .

[7]  G Ruocco,et al.  Free-energy transition in a gas of noninteracting nonlinear wave particles. , 2008, Physical review letters.

[8]  H. Inoue,et al.  Eigen Value Problem with Nonvanishing Potentials , 1977 .

[9]  足立 匡義 書評 P.D.Hislop, I.M.Sigal: Introduction to Spectral Theory--With Applications to Schrodinger Operators〔和文〕 , 2000 .

[10]  Y. Kato,et al.  Non‐self‐adjoint Zakharov–Shabat operator with a potential of the finite asymptotic values. II. Inverse problem , 1984 .

[11]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[12]  Israel Michael Sigal,et al.  Introduction to Spectral Theory: With Applications to Schrödinger Operators , 1995 .

[13]  The Dirac inverse spectral transform: Kinks and boomerons , 1980 .

[14]  M. Boiti,et al.  The spectral transform for the NLS equation with left-right asymmetric boundary conditions , 1982 .

[15]  Hiroshi Inoue,et al.  Inverse Scattering Method for the Nonlinear Evolution Equations under Nonvanishing Conditions , 1978 .

[16]  C. Hamner,et al.  Generation of dark-bright soliton trains in superfluid-superfluid counterflow. , 2010, Physical review letters.

[17]  Israel Michael Sigal,et al.  Introduction to Spectral Theory , 1996 .

[18]  J. K. Shaw,et al.  On the Eigenvalues of Zakharov-Shabat Systems , 2003, SIAM J. Math. Anal..