Direct stochastic optical reconstruction microscopy (dSTORM).

Single-molecule localization-based super-resolution microscopy can be performed with regular, bright, and photostable organic fluorophores. We review a concept termed direct stochastic optical reconstruction microscopy (dSTORM), which operates conventional fluorophores as photoswitches and provides an optical resolution of ~20 nm. We introduce the principle of dSTORM, illustrate experimental schemes, and discuss approaches for data analysis.

[1]  Mike Heilemann,et al.  Three-Dimensional, Tomographic Super-Resolution Fluorescence Imaging of Serially Sectioned Thick Samples , 2012, PloS one.

[2]  S. Hess,et al.  Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples , 2008, Nature Methods.

[3]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[4]  D. Jones,et al.  Redox sensing: orthogonal control in cell cycle and apoptosis signalling , 2010, Journal of internal medicine.

[5]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[6]  X. Zhuang,et al.  Whole cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution , 2008, Nature Methods.

[7]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[8]  Kai Johnsson,et al.  An engineered protein tag for multiprotein labeling in living cells. , 2008, Chemistry & biology.

[9]  M. Heilemann,et al.  Live-cell super-resolution imaging with synthetic fluorophores. , 2012, Annual review of physical chemistry.

[10]  Mike Heilemann,et al.  Photoinduced formation of reversible dye radicals and their impact on super-resolution imaging , 2011, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[11]  Mike Heilemann,et al.  Subdiffraction-resolution fluorescence microscopy of myosin-actin motility. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  Timothy J. Mitchison,et al.  A chemical method for fast and sensitive detection of DNA synthesis in vivo , 2008, Proceedings of the National Academy of Sciences.

[13]  M. Heilemann,et al.  A SNAP-Tagged Derivative of HIV-1—A Versatile Tool to Study Virus-Cell Interactions , 2011, PloS one.

[14]  M. Heilemann,et al.  Identification of the Product of Photoswitching of an Oxazine Fluorophore Using Fourier Transform Infrared Difference Spectroscopy , 2010 .

[15]  Stephan J Sigrist,et al.  Multi‐colour direct STORM with red emitting carbocyanines , 2012, Biology of the cell.

[16]  B. Ripley Modelling Spatial Patterns , 1977 .

[17]  H. Vogel,et al.  A general method for the covalent labeling of fusion proteins with small molecules in vivo , 2003, Nature Biotechnology.

[18]  Mike Heilemann,et al.  Super-resolution imaging with small organic fluorophores. , 2009, Angewandte Chemie.

[19]  David Baddeley,et al.  Visualization of Localization Microscopy Data , 2010, Microscopy and Microanalysis.

[20]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[21]  X. Zhuang,et al.  Fast three-dimensional super-resolution imaging of live cells , 2011, Nature Methods.

[22]  P. Verveer,et al.  Coordinate-based colocalization analysis of single-molecule localization microscopy data , 2011, Histochemistry and Cell Biology.

[23]  V. Zinchuk,et al.  Quantitative Colocalization Analysis of Confocal Fluorescence Microscopy Images , 2008, Current protocols in cell biology.

[24]  Peter J. Verveer,et al.  Chemically Induced Photoswitching of Fluorescent Probes—A General Concept for Super-Resolution Microscopy , 2011, Molecules.

[25]  Benjamin B. Machta,et al.  Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting , 2011, PloS one.

[26]  Vadim Zinchuk,et al.  Quantitative Colocalization Analysis of Confocal Fluorescence Microscopy Images , 2008, Current protocols in cell biology.

[27]  Mark Bates,et al.  Multicolor Super-Resolution Fluorescence Imaging via Multi-Parameter Fluorophore Detection , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[28]  Follow‐up to paper by S. Wolter, M. Schüttpelz, M. Tscherepanow, S. van de Linde, M. Heilemann and M. Sauer, entitled Real‐Time Computation of Subdiffraction‐Resolution Fluorescence Images , 2012, Journal of microscopy.

[29]  Paul D. Dunne,et al.  Quantitative single-molecule microscopy reveals that CENP-ACnp1 deposition occurs during G2 in fission yeast , 2012, Open Biology.

[30]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[31]  P. Annibale,et al.  Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking , 2011, PloS one.

[32]  M. Heilemann,et al.  Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.

[33]  Mike Heilemann,et al.  Live-cell super-resolution imaging with trimethoprim conjugates , 2010, Nature Methods.

[34]  H. Flyvbjerg,et al.  Optimized localization-analysis for single-molecule tracking and super-resolution microscopy , 2010, Nature Methods.

[35]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[36]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[37]  Lord Rayleigh On the Theory of Optical Images, with Special Reference to the Microscope , 1903 .

[38]  Increasing the efficacy of bioorthogonal click reactions for bioconjugation: a comparative study. , 2011, Angewandte Chemie.

[39]  M. Heilemann,et al.  Direct stochastic optical reconstruction microscopy with standard fluorescent probes , 2011, Nature Protocols.

[40]  C. Zimmer,et al.  QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ , 2010, Nature Methods.

[41]  F. Cordelières,et al.  A guided tour into subcellular colocalization analysis in light microscopy , 2006, Journal of microscopy.

[42]  R. Sec. XV. On the theory of optical images, with special reference to the microscope , 2009 .

[43]  Mike Heilemann,et al.  Measuring localization performance of super-resolution algorithms on very active samples. , 2011, Optics express.

[44]  Keith A. Lidke,et al.  Fast, single-molecule localization that achieves theoretically minimum uncertainty , 2010, Nature Methods.

[45]  Mike Heilemann,et al.  Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging , 2009, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[46]  M. Sheetz,et al.  In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag , 2005, Nature Methods.

[47]  A. Diaspro,et al.  Live-cell 3D super-resolution imaging in thick biological samples , 2011, Nature Methods.