Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method

We present a novel, cell-local shock detector for use with discontinuous Galerkin (DG) methods. The output of this detector is a reliably scaled, element-wise smoothness estimate which is suited as a control input to a shock capture mechanism. Using an artificial viscosity in the latter role, we obtain a DG scheme for the numerical solution of nonlinear systems of conservation laws. Building on work by Persson and Peraire, we thoroughly justify the detector’s design and analyze its performance on a number of benchmark problems. We further explain the scaling and smoothing steps necessary to turn the output of the detector into a local, artificial viscosity. We close by providing an extensive array of numerical tests of the detector in use.

[1]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[2]  L. Shampine,et al.  A 3(2) pair of Runge - Kutta formulas , 1989 .

[3]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[4]  S. Sherwin,et al.  STABILISATION OF SPECTRAL/HP ELEMENT METHODS THROUGH SPECTRAL VANISHING VISCOSITY: APPLICATION TO FLUID MECHANICS MODELLING , 2006 .

[5]  P. Borwein,et al.  Polynomials and Polynomial Inequalities , 1995 .

[6]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[7]  Felix Rieper,et al.  On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe and HLL , 2010, J. Comput. Phys..

[8]  Timothy C. Warburton,et al.  Nodal discontinuous Galerkin methods on graphics processors , 2009, J. Comput. Phys..

[9]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[10]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[11]  B. Rivière,et al.  DISCONTINUOUS GALERKIN METHODS FOR CONVECTION-DIFFUSION EQUATIONS FOR VARYING AND VANISHING DIFFUSIVITY , 2009 .

[12]  Jean-Luc Guermond,et al.  Entropy-based nonlinear viscosity for Fourier approximations of conservation laws , 2008 .

[13]  Ashley F. Emery,et al.  An Evaluation of Several Differencing Methods for Inviscid Fluid Flow Problems , 1968 .

[14]  George Em Karniadakis,et al.  Galerkin and discontinuous Galerkin spectral/hp methods , 1999 .

[15]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[16]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[17]  Shahrouz Aliabadi,et al.  International Journal of C 2005 Institute for Scientific Numerical Analysis and Modeling Computing and Information a Slope Limiting Procedure in Discontinuous Galerkin Finite Element Method for Gasdynamics Applications , 2022 .

[18]  P. Revesz Interpolation and Approximation , 2010 .

[19]  Robert L. Lee,et al.  Don''t suppress the wiggles|they''re telling you something! Computers and Fluids , 1981 .

[20]  Gunilla Kreiss,et al.  Elimination of First Order Errors in Shock Calculations , 2000, SIAM J. Numer. Anal..

[21]  Timothy C. Warburton,et al.  Taming the CFL Number for Discontinuous Galerkin Methods on Structured Meshes , 2008, SIAM J. Numer. Anal..

[22]  Ralf Hartmann,et al.  Adaptive discontinuous Galerkin methods with shock‐capturing for the compressible Navier–Stokes equations , 2006 .

[23]  Catherine Mavriplis,et al.  Adaptive mesh strategies for the spectral element method , 1992 .

[24]  Miloslav Feistauer,et al.  On some aspects of the discontinuous Galerkin finite element method for conservation laws , 2003, Math. Comput. Simul..

[25]  Jérôme Jaffré,et al.  CONVERGENCE OF THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC CONSERVATION LAWS , 1995 .

[26]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[27]  Gunilla Kreiss,et al.  A Remark on Numerical Errors Downstream of Slightly Viscous Shocks , 1999 .

[28]  Volker John,et al.  Finite element methods for time-dependent convection – diffusion – reaction equations with small diffusion , 2008 .

[29]  Boleslaw K. Szymanski,et al.  Adaptive Local Refinement with Octree Load Balancing for the Parallel Solution of Three-Dimensional Conservation Laws , 1997, J. Parallel Distributed Comput..

[30]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[31]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[32]  Kenneth E. Tatum,et al.  The NPARC Alliance Verification and Validation Archive , 2000 .

[33]  Francesco Bassi,et al.  Accurate 2D Euler computations by means of a high order discontinuous finite element method , 1995 .

[34]  H. M. Möller,et al.  Invariant Integration Formulas for the n-Simplex by Combinatorial Methods , 1978 .

[35]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[36]  Chi-Wang Shu,et al.  On the Gibbs Phenomenon and Its Resolution , 1997, SIAM Rev..

[37]  Jinchao,et al.  A HIGH ORDER ADAPTIVE FINITE ELEMENT METHOD FOR SOLVING NONLINEAR HYPERBOLIC CONSERVATION LAWS , 2011 .

[38]  Tim Warburton,et al.  An explicit construction of interpolation nodes on the simplex , 2007 .

[39]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[40]  Miloslav Feistauer,et al.  On a robust discontinuous Galerkin technique for the solution of compressible flow , 2007, J. Comput. Phys..

[41]  David L. Darmofal,et al.  Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation , 2010, J. Comput. Phys..

[42]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[43]  Y. C. Zhou,et al.  High resolution conjugate filters for the simulation of flows , 2001 .

[44]  Lilia Krivodonova,et al.  Limiters for high-order discontinuous Galerkin methods , 2007, J. Comput. Phys..

[45]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[46]  E. Süli,et al.  A note on the design of hp-adaptive finite element methods for elliptic partial differential equations , 2005 .

[47]  A. Ern,et al.  A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity , 2008 .

[48]  Michael Garland,et al.  Efficient Sparse Matrix-Vector Multiplication on CUDA , 2008 .

[49]  Pierre Sagaut,et al.  A problem-independent limiter for high-order Runge—Kutta discontinuous Galerkin methods , 2001 .

[50]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[51]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[52]  Zhiliang Xu,et al.  Hierarchical reconstruction for discontinuous Galerkin methods on unstructured grids with a WENO-type linear reconstruction and partial neighboring cells , 2009, J. Comput. Phys..

[53]  Claus-Dieter Munz,et al.  An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations , 2008, J. Comput. Phys..

[54]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[55]  Erik Burman,et al.  On nonlinear artificial viscosity, discrete maximum principle and hyperbolic conservation laws , 2007 .

[56]  Philip L. Roe,et al.  On Postshock Oscillations Due to Shock Capturing Schemes in Unsteady Flows , 1997 .

[57]  Bernardo Cockburn,et al.  Error Estimates for the Runge-Kutta Discontinuous Galerkin Method for the Transport Equation with Discontinuous Initial Data , 2008, SIAM J. Numer. Anal..

[58]  T. Koornwinder Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .

[59]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[60]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .