Optimization of reduction schedule in a tandem cold rolling mill considering the material properties of the strip

[1]  T. Bergs,et al.  Influence of pass reduction in cold rolling on damage evolution in deep drawing of rotationally symmetric cups , 2021, IOP Conference Series: Materials Science and Engineering.

[2]  M. Poursina,et al.  A comparative study of six fracture loci for DIN1623 St12 steel to predict strip tearing in a tandem cold rolling mill , 2021 .

[3]  Yu Wang,et al.  Multi-objective optimization of rolling schedule for tandem cold strip rolling based on NSGA-II , 2020 .

[4]  Xiao-gang Li,et al.  Multi-Objective Optimization of Intermediate Roll Profile for a 6-High Cold Rolling Mill , 2020 .

[5]  M. Brünig,et al.  Damage and failure at negative stress triaxialities: Experiments, modeling and numerical simulations , 2017 .

[6]  M. Poursina,et al.  Numerical simulations and experimental validations of a proposed ductile damage model for DIN1623 St12 steel , 2017 .

[7]  Zhi-wei Zhao,et al.  Multi-objective optimization of rolling schedules on aluminum hot tandem rolling , 2016 .

[8]  J. Chen Load distribution algorithm of process control system in tandem cold rolling , 2015 .

[9]  M. Poursina,et al.  A new method for prediction of forward slip in the tandem cold rolling mill , 2015 .

[10]  Wei-gang Li,et al.  Multi-objective optimization for draft scheduling of hot strip mill , 2012 .

[11]  Mehrdad Poursina,et al.  Application of genetic algorithms to optimization of rolling schedules based on damage mechanics , 2012, Simul. Model. Pract. Theory.

[12]  M. Mashayekhi,et al.  Continuum damage mechanics analysis of strip tearing in a tandem cold rolling process , 2011, Simul. Model. Pract. Theory.

[13]  Jingming Yang,et al.  Multi-Objective Optimization for Tandem Cold Rolling Schedule , 2010 .

[14]  Jingming Yang,et al.  Optimization of schedule with multi-objective for tandem cold rolling mill based on IAGA , 2010, 2010 International Conference on Mechanic Automation and Control Engineering.

[15]  Alberto Bemporad,et al.  Optimization-based automatic flatness control in cold tandem rolling , 2010 .

[16]  Carlos Thadeu de Ávila Pires,et al.  Adaptation for tandem cold mill models , 2009 .

[17]  Carlos Thadeu de Ávila Pires,et al.  Set-up optimization for tandem cold mills: A case study , 2006 .

[18]  N. Venkata Reddy,et al.  Prediction of internal defects in plane strain rolling , 2005 .

[19]  H. Dell,et al.  A comprehensive failure model for crashworthiness simulation of aluminium extrusions , 2004 .

[20]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[21]  Ming Li,et al.  A Computational and Experimental Study of Cold Rolling of Aluminum Alloys With Edge Cracking , 2004 .

[22]  Gerasimos Rigatos,et al.  A Pareto-optimal genetic algorithm for warehouse multi-objective optimization , 2001 .

[23]  A. K. Tieu,et al.  Toward a heuristic optimum design of rolling schedules for tandem cold rolling mills , 2000 .

[24]  P. M. Dixit,et al.  Application of Fuzzy Set Theory in the Scheduling of a Tandem Cold-Rolling Mill , 2000 .

[25]  Roberts,et al.  Cold Rolling of Steel , 1978 .

[26]  Yunlong Wang,et al.  Multi-Objective Optimization of Rolling Schedule for Five-Stand Tandem Cold Mill , 2020, IEEE Access.

[27]  Makishi Nakayama,et al.  PASS SCHEDULE OPTIMIZATION FOR A TANDEM COLD MILL , 2005 .

[28]  T. Wierzbicki,et al.  On fracture locus in the equivalent strain and stress triaxiality space , 2004 .

[29]  F. Leckie A course on damage mechanics , 1998 .

[30]  K. P. Rao,et al.  Role of strain-hardening laws in the prediction of forming limit curves , 1997 .

[31]  W. Hosford,et al.  Metal Forming: Mechanics and Metallurgy , 1993 .

[32]  J. Jonas,et al.  Formability and workability of metals : plastic instability and flow localization , 1984 .