Electronic states and transitions in C_60 and C_70 fullerenes

A review of the most relevant aspects of fullerene electronic structure and spectroscopy is presented. Experimental data and their interpretation based on computational results are discussed both for fullerene C60 and C70, with particular attention to the properties of the isolated molecule. Concerning singlet state spectroscopy, it is shown that because of its high symmetry, only dipole-forbidden electronic states are found in the low excitation energy region of C60. Conversely, the lowering of symmetry in C70 leads to several complications in its electronic structure and spectroscopy, due to the presence of weakly allowed transitions in the low excitation energy region. A slightly less congested distribution of low lying excited states characterizes the triplet manifold of the fullerenes. It is concluded that while C60 is important in aiding understanding of the main features in electronic spectroscopy of fullerenes, such as the presence of strong absorptions in the high energy range, its spectra are deeply Influenced by its high symmetry and are very peculiar. On the other hand, C70, with its lower symmetry and more complex spectra, represents a more realistic model for the intricate details of the electronic structure and electronic spectroscopy of larger and smaller fullerenes and their derivatives, which are generally characterized by lower symmetry compared to C60.

[1]  F. Negri,et al.  Vibronic structure of the emission spectra from single vibronic levels of the S1 manifold in naphthalene: Theoretical simulation , 1996 .

[2]  Robert L. Whetten,et al.  Photophysical properties of C60 , 1991 .

[3]  Aron Kuppermann,et al.  Electronic spectroscopy of polyatomic molecules by low-energy, variable-angle electron impact , 1979 .

[4]  Martin Karplus,et al.  Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization , 1972 .

[5]  Jan F. Schmidt,et al.  ON THE FLUORESCENCE OF CRYSTALLINE C60 AT 1.2 K , 1995 .

[6]  F. Zerbetto,et al.  Quantum-chemical investigation of Franck-Condon and Jahn-Teller activity in the electronic spectra of Buckminsterfullerene , 1988 .

[7]  G. Orlandi,et al.  Quantum-Chemical Modeling and Analysis of the Vibrational Structure in the Phosphorescence Spectrum of C60 , 2001 .

[8]  R. L. Ellis,et al.  Spin-orbit coupling in organic molecules , 1975 .

[9]  R. Bini,et al.  On the vibrational assignment of fullerene C60 , 1994 .

[10]  Alan G. Marshall,et al.  Observation of the doubly charged, gas-phase fullerene anions C602- and C702- , 1991 .

[11]  F. Zerbetto,et al.  Quantum chemical and vibronic analysis of the 1 2B2↔1 2A2, 2 2B2 transition in benzyl‐h7 and benzyl‐d7 radicals , 1990 .

[12]  M. Kappes,et al.  Experiment versus Time Dependent Density Functional Theory Prediction of Fullerene Electronic Absorption , 1998 .

[13]  E. Groenen,et al.  The triplet state of C70. A zero-field study , 1998 .

[14]  J. Warntjes,et al.  Photoluminescence of molecular C70 at 1.5 K. On the nature of the lowest excited states , 1996 .

[15]  Thomas W. Ebbesen,et al.  Excited-state properties of C60 , 1991 .

[16]  C. Lieber,et al.  UNUSUAL PHOTOLUMINESCENCE BEHAVIOR OF C70 , 1994 .

[17]  H. Jaffe,et al.  Use of the CNDO Method in Spectroscopy. II. Five‐Membered Rings , 1968 .

[18]  W. Krätschmer,et al.  The infrared and ultraviolet absorption spectra of laboratory-produced carbon dust: evidence for the presence of the C60 molecule , 1990 .

[19]  Zbigniew Gasyna,et al.  The magnetic circular dichroism and absorption spectra of C60 isolated in Ar matrices , 1991 .

[20]  E. Land,et al.  Pulse radiolysis study of buckminsterfullerene in benzene solution. Assignment of the C60 triplet-triplet absorption spectrum , 1993 .

[21]  J. Sworakowski,et al.  A photoluminescence study of fullerenes: total luminescence spectroscopy of C60 and C70 , 1993 .

[22]  Chen,et al.  Electronic structure of solid C60: Experiment and theory. , 1991, Physical Review Letters.

[23]  H. W. Kroto,et al.  The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70 , 1987, Nature.

[24]  M. Prato,et al.  Optical limiting and non linear optical properties of fullerene derivatives embedded in hybrid sol–gel glasses , 2000 .

[25]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[26]  Douglas J. Klein,et al.  Elemental carbon cages , 1988 .

[27]  M. Chergui,et al.  Absorption Wavelengths and Bandwidths for Interstellar Searches of C60 in the 2400-4100 Å Region , 2001 .

[28]  Lee W. Tutt,et al.  Optical limiting performance of C60 and C70 solutions , 1992, Nature.

[29]  M. Chergui,et al.  ASSIGNMENT OF THE LOWEST EXCITED STATES OF C70 AND EVIDENCE FOR FLUORESCENCE FROM THE S2 STATE , 1998 .

[30]  R. Abouaf,et al.  Electron impact on free C60. Excited states below 10 eV , 1993 .

[31]  F. Negri,et al.  Theoretical analysis of the vibronic structure of the zero-kinetic-energy photoelectron spectra from single vibronic levels of the S1-state manifold of naphthalene , 1997 .

[32]  J. Close,et al.  Absorption spectroscopy of C60 molecules isolated in helium droplets , 1997 .

[33]  M. Chergui,et al.  Fluorescence spectra of isolated molecules in neon and argon matrices: assignment of the lowest emitting states , 1996 .

[34]  A. Rosén,et al.  Electronic transitions in C60. On the origin of the strong interstellar absorption at 217 nm , 1991 .

[35]  A. Rosén,et al.  Optical spectrum of the icosahedral C60- “follene-60” , 1987 .

[36]  F. Negri,et al.  The vibrational frequencies of fullerenes from an updated QCFF/PI Hamiltonian , 1996 .

[37]  A. Goldoni,et al.  The EEL epectrum of the triplet exciton of C60 and the theoretical analysis of its vibronic structure , 1996 .

[38]  Jan F. Schmidt,et al.  Phosphorescence of C60 at 1.2 K , 1994 .

[39]  Patrick W. Fowler,et al.  Structural Motifs and the Stability of Fullerenes , 1995 .

[40]  R. Smalley,et al.  Cold molecular beam electronic spectrum of C60 and C70 , 1991 .

[41]  K. Kotz,et al.  TEMPERATURE AND SOLVENT EFFECTS ON THE LUMINESCENCE SPECTRUM OF C70 : ASSIGNMENT OF THE LOWEST SINGLET AND TRIPLET STATES , 1995 .

[42]  F. Negri,et al.  On the vibronic structure of the S0↔S1 transitions in azulene , 1993 .

[43]  I. Holleman,et al.  Lowest excited singlet-state of c-60 - a vibronic analysis of the fluorescence , 1995 .

[44]  M. Chergui,et al.  Picosecond studies of the intramolecular relaxation processes in isolated C60 and C70 molecules , 1999 .

[45]  F. Negri,et al.  Vibronic structure in the multiple state fluorescence spectrum of C70: A theoretical investigation , 1998 .

[46]  H. Jaffe,et al.  Use of the CNDO Method in Spectroscopy. I. Benzene, Pyridine, and the Diazines , 1968 .

[47]  F. Zerbetto,et al.  New Assignments in the 600 nm Region of C60: The Origins of the T1g and Gg Transitions , 1996 .

[48]  László Biczók,et al.  Extinction coefficients of C60 triplet and anion radical, and one-electron reduction of the triplet by aromatic donors , 1992 .

[49]  I. László,et al.  On the geometrical structure and UV spectrum of the truncated icosahedral C60, molecule , 1987 .

[50]  James H. Rice,et al.  Fluorescence spectroscopy of C60 in toluene solutions at 5 K , 2001 .

[51]  M. Chergui,et al.  Phosphorescence of C60 in rare gas matrices , 1996 .

[52]  J. Maier,et al.  Electronic spectra of the C70 molecule and C70+, C70− ions in neon matrices , 1993 .

[53]  F. Negri,et al.  On the analysis of the phosphorescence spectrum of , 1996 .

[54]  M. Chergui,et al.  The visible emission and absorption spectrum of C60 , 1997 .

[55]  J. Koput The equilibrium structure and spectroscopic constants of HCP - an ab initio study , 1996 .

[56]  J. Warntjes,et al.  On the singlet excited states of C70 and C60 , 1998 .

[57]  Michael P. O'Neil,et al.  Triplet states of fullerenes C60 and C70 : electron paramagnetic resonance spectra, photophysics, and electronic structures , 1991 .

[58]  Yuan-Pern Lee,et al.  Laser-induced fluorescence and phosphoresence of C isolated in solid Ne , 1996 .

[59]  F. Negri,et al.  The Electronic Spectroscopy of C60 and C70: A Theoretical Study* , 1997 .

[60]  M. Chergui Medium effects on the spectroscopy and intramolecular energy redistribution of C60 in cryogenic matrices , 2000 .

[61]  B. Valeur,et al.  Picosecond time-resolved and steady-state studies of the polarization of the fluorescence of C60 and C70 , 1997 .

[62]  M. Zerner,et al.  Quantum chemical calculations on buckminsterfullerene and related structures. II. The electronic structure and spectra of some Cn and CnCa2+ cages , 1991 .

[63]  J. Hvam,et al.  High-resolution spectroscopy of matrix-isolated fullerene molecules , 1997 .

[64]  J. Warntjes,et al.  Triplet-State Dynamics of C70 , 1998 .

[65]  Sydney Leach,et al.  Electronic spectra and transitions of the fullerene C60 , 1992 .

[66]  Louis J. Terminello,et al.  Unfilled orbitals of C60 and C70 from carbon K-shell X-ray absorption fine structure , 1991 .

[67]  I. László,et al.  A study of the UV spectrum of the truncated icosahedral C60 molecule , 1989 .

[68]  Yi Wang Photophysical properties of fullerenes and fullerene/N,N-diethylaniline charge-transfer complexes , 1992 .

[69]  F. Zerbetto,et al.  Interpretation of the vibrational structure of the emission and absorption spectra of C60 , 1992 .

[70]  M. Prato,et al.  Synthesis and Optical‐Limiting Behavior of Hybrid Inorganic–Organic Materials from the Sol–Gel Processing of Organofullerenes , 1999 .

[71]  C. Foote,et al.  Photophysical properties of C70 , 1991 .

[72]  Roger Taylor,et al.  Preparation and UV / visible spectra of fullerenes C60 and C70 , 1991 .

[73]  F. Zerbetto,et al.  QCFF/PI vibrational frequencies of some spherical carbon clusters , 1991 .

[74]  Lai‐Sheng Wang,et al.  High resolution photoelectron spectroscopy of C60 , 1999 .

[75]  Sydney Leach,et al.  Triplet state absorption studies of C70 in benzene solution , 1993 .

[76]  L. Biczók,et al.  External heavy atom induced phosphorescence emission of fullerenes: the energy of triplet C60 , 1992 .

[77]  D. Bethune,et al.  Bond Lengths in Free Molecules of Buckminsterfullerene, C60, from Gas-Phase Electron Diffraction , 1991, Science.

[78]  Y. Achiba,et al.  Transient absorption, lifetime and relaxation of C60 in the triplet state , 1991 .

[79]  M. Chergui,et al.  Picosecond and femtosecond studies of the energy redistribution in matrix-isolated C60 molecules , 1999 .