Approximation and optimality necessary conditions in relaxed stochastic control problems

We consider a control problem where the state variable is a solution of a stochastic differential equation (SDE) in which the control enters both the drift and the diffusion coefficient. We study the relaxed problem for which admissible controls are measure-valued processes and the state variable is governed by an SDE driven by an orthogonal martingale measure. Under some mild conditions on the coefficients and pathwise uniqueness, we prove that every diffusion process associated to a relaxed control is a strong limit of a sequence of diffusion processes associated to strict controls. As a consequence, we show that the strict and the relaxed control problems have the same value function and that an optimal relaxed control exists. Moreover we derive a maximum principle of the Pontriagin type, extending the well-known Peng stochastic maximum principle to the class of measure-valued controls.

[1]  Harold J. Kushner,et al.  Existence results for optimal stochastic controls , 1975 .

[2]  N. El Karoui,et al.  Martingale measures and stochastic calculus , 1990 .

[3]  Stig Larsson,et al.  Introduction to stochastic partial differential equations , 2008 .

[4]  Xun Yu Zhou Stochastic Near-Optimal Controls: Necessary and Sufficient Conditions for Near-Optimality , 1998 .

[5]  I. Mitoma Tightness of Probabilities On $C(\lbrack 0, 1 \rbrack; \mathscr{Y}')$ and $D(\lbrack 0, 1 \rbrack; \mathscr{Y}')$ , 1983 .

[6]  S. Peng A general stochastic maximum principle for optimal control problems , 1990 .

[7]  池田 信行,et al.  Stochastic differential equations and diffusion processes , 1981 .

[8]  Brahim Mezerdi,et al.  Pathwise uniqueness and approximation of solutions of stochastic differential equations , 1998 .

[9]  Alain Ghouila-Houri,et al.  Sur la généralisation de la notion de commande d'un système guidable , 1967 .

[10]  Arthur Stoddart,et al.  Existence of optimal controls , 1967 .

[11]  Brahim Mezerdi,et al.  Necessary conditions for optimality in relaxed stochastic control problems , 2002 .

[12]  X. Zhou,et al.  Stochastic Controls: Hamiltonian Systems and HJB Equations , 1999 .

[13]  Mezerdi Brahim,et al.  Necessary conditions for optimality for a diffusion with a non-smooth drift , 1988 .

[14]  KarouiNicole El,et al.  Compactification methods in the control of degenerate diffusions: existence of an optimal control , 1987 .

[15]  J. Jacod,et al.  Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité , 1981 .

[16]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[17]  A. Skorokhod,et al.  Studies in the theory of random processes , 1966 .

[18]  Nicole El Karoui,et al.  Identification of an infinite-dimensional parameter for stochastic diffusion equations , 1988 .

[19]  Sylvie Méléard,et al.  Systeme de particules et mesures-martingales: Un theoreme de propagation du chaos , 1988 .

[20]  Sanjoy K. Mitter,et al.  Nonlinear Filtering and Stochastic Control , 1983 .

[21]  S. Méléard,et al.  A generalized equation for a continuous measure branching process , 1989 .

[22]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[23]  Brahim MEZERDI,et al.  Approximation in optimal control of diffusion processes , 2000 .

[24]  V. Mandrekar,et al.  ON THE EXISTENCE OF OPTIMAL RANDOM CONTROLS. , 1968 .

[25]  A. Bensoussan Lectures on stochastic control , 1982 .