Proving Formally the Implementation of an Efficient gcd Algorithm for Polynomials

We describe here a formal proof in the Coq system of the structure theorem for subresultants, which allows to prove formally the correctness of our implementation of the subresultants algorithm. Up to our knowledge it is the first mechanized proof of this result.

[1]  Benjamin Grégoire,et al.  A Purely Functional Library for Modular Arithmetic and Its Application to Certifying Large Prime Numbers , 2006, IJCAR.

[2]  S. Basu,et al.  Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics) , 2006 .

[3]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[4]  E CollinsGeorge Subresultants and Reduced Polynomial Remainder Sequences , 1967 .

[5]  Chee-Keng Yap,et al.  Fundamental problems of algorithmic algebra , 1999 .

[6]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[7]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[8]  Benjamin Grégoire,et al.  Proving Equalities in a Commutative Ring Done Right in Coq , 2005, TPHOLs.

[9]  George E. Collins,et al.  Subresultants and Reduced Polynomial Remainder Sequences , 1967, JACM.

[10]  Benjamin Grégoire,et al.  A compiled implementation of strong reduction , 2002, ICFP '02.

[11]  John Harrison,et al.  A Skeptic's Approach to Combining HOL and Maple , 1998, Journal of Automated Reasoning.

[12]  David Delahaye,et al.  Quantifier Elimination over Algebraically Closed Fields in a Proof Assistant using a Computer Algebra System , 2005, Calculemus.

[13]  Assia Mahboubi Programming and certifying a CAD algorithm in the Coq system , 2005, Mathematics, Algorithms, Proofs.

[14]  Claudio Sacerdoti Coen A Semi-reflexive Tactic for (Sub-)Equational Reasoning , 2004, TYPES.

[15]  C.G.J. Jacobi De eliminatione variabilis e duabus aequationibus algebraicis. , 1836 .

[16]  Laurent Théry,et al.  A Machine-Checked Implementation of Buchberger's Algorithm , 2001, Journal of Automated Reasoning.

[17]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[18]  Lawrence Charles Paulson,et al.  Isabelle/HOL: A Proof Assistant for Higher-Order Logic , 2002 .

[19]  Joachim von zur Gathen,et al.  Subresultants revisited , 2003, Theor. Comput. Sci..

[20]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[21]  Keith O. Geddes,et al.  Algorithms for computer algebra , 1992 .

[22]  Richard Zippel,et al.  Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.

[23]  Richard J. Fateman,et al.  Evaluation of the heuristic polynomial GCD , 1995, ISSAC '95.

[24]  Pierre Castéran,et al.  Interactive Theorem Proving and Program Development , 2004, Texts in Theoretical Computer Science An EATCS Series.

[25]  Gilles Barthe,et al.  Setoids in type theory , 2003, Journal of Functional Programming.