Structure of the bc1–cbb3 respiratory supercomplex from Pseudomonas aeruginosa

Significance The electrochemical proton gradient needed for ATP synthesis in cells is sustained by the coupled electron transfer and proton translocation activities of respiratory chain complexes. The respiratory chain of Pseudomonas aeruginosa is central to the organism’s pathogenicity, but is poorly understood. In P. aeruginosa the penultimate respiratory complex, cytochrome bc1, can transfer electrons to several different terminal oxidases. We demonstrate that cytochrome bc1 can form a supercomplex with multiple isoforms of cytochrome cbb3 and transfer electrons directly to them via bound cytochrome c4 and c5. The structure of the bc1–c4c5–cbb3 supercomplex suggests that this type of supercomplex may occur in other pathogenic bacteria.

[1]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[2]  P. Brzezinski,et al.  Structure and Mechanism of Respiratory III–IV Supercomplexes in Bioenergetic Membranes , 2021, Chemical reviews.

[3]  M. Bott,et al.  The respiratory supercomplex from C. glutamicum , 2021, bioRxiv.

[4]  J. Rubinstein,et al.  Rieske head domain dynamics and indazole-derivative inhibition of Candida albicans complex III , 2021, bioRxiv.

[5]  P. Bork,et al.  Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation , 2021, Nucleic Acids Res..

[6]  K. Hardie,et al.  Disruption of the Pseudomonas aeruginosa Tat system perturbs PQS-dependent quorum sensing and biofilm maturation through loss of the Rieske cytochrome bc1 sub-unit , 2021, bioRxiv.

[7]  B. Garcia,et al.  Cryo-EM structures of engineered active bc1-cbb3 type CIII2CIV super-complexes and electronic communication between the complexes , 2021, Nature Communications.

[8]  J. Rubinstein,et al.  Cryo-EM structure and kinetics reveal electron transfer by 2D diffusion of cytochrome c in the yeast III-IV respiratory supercomplex , 2020, Proceedings of the National Academy of Sciences.

[9]  Conrad C. Huang,et al.  UCSF ChimeraX: Structure visualization for researchers, educators, and developers , 2020, Protein science : a publication of the Protein Society.

[10]  Yuyao Hu,et al.  The aerobic respiratory chain of Pseudomonas aeruginosa cultured in artificial urine media: Role of NQR and terminal oxidases , 2020, PloS one.

[11]  Andrew M. Hartley,et al.  Rcf2 revealed in cryo-EM structures of hypoxic isoforms of mature mitochondrial III-IV supercomplexes , 2020, Proceedings of the National Academy of Sciences.

[12]  David J. Fleet,et al.  3D Variability Analysis: Resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM , 2020, bioRxiv.

[13]  A. Stuchebrukhov,et al.  Kinetic advantage of forming respiratory supercomplexes. , 2020, Biochimica et biophysica acta. Bioenergetics.

[14]  Mathias Müsken,et al.  Parallel evolutionary paths to produce more than one Pseudomonas aeruginosa biofilm phenotype , 2020, npj Biofilms and Microbiomes.

[15]  David J. Fleet,et al.  Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction , 2019, Nature Methods.

[16]  D. Hogan,et al.  Structure and redox properties of the diheme electron carrier cytochrome c4 from Pseudomonas aeruginosa. , 2019, Journal of inorganic biochemistry.

[17]  G. Degliesposti,et al.  Structures of Respiratory Supercomplex I+III2 Reveal Functional and Conformational Crosstalk , 2019, Molecular cell.

[18]  G. Asokan,et al.  WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain , 2019, Oman medical journal.

[19]  J. Rubinstein,et al.  Structure of a functional obligate complex III2IV2 respiratory supercomplex from Mycobacterium smegmatis , 2018, Nature Structural & Molecular Biology.

[20]  Jun Yu Li,et al.  An electron transfer path connects subunits of a mycobacterial respiratory supercomplex , 2018, Science.

[21]  José María Carazo,et al.  Automatic local resolution-based sharpening of cryo-EM maps , 2018, bioRxiv.

[22]  B. Salin,et al.  Oxidative phosphorylation supercomplexes and respirasome reconstitution of the colorless alga Polytomella sp. , 2018, Biochimica et biophysica acta. Bioenergetics.

[23]  T. Mah,et al.  Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. , 2017, FEMS microbiology reviews.

[24]  H. Michel,et al.  Subunit CcoQ is involved in the assembly of the Cbb3-type cytochrome c oxidases from Pseudomonas stutzeri ZoBell but not required for their activity. , 2017, Biochimica et biophysica acta. Bioenergetics.

[25]  M. Ishii,et al.  Expression of multiple cbb3 cytochrome c oxidase isoforms by combinations of multiple isosubunits in Pseudomonas aeruginosa , 2016, Proceedings of the National Academy of Sciences.

[26]  Jianlin Lei,et al.  The architecture of the mammalian respirasome , 2016, Nature.

[27]  Raja R Srinivas,et al.  A Fungal-Selective Cytochrome bc1 Inhibitor Impairs Virulence and Prevents the Evolution of Drug Resistance. , 2016, Cell chemical biology.

[28]  B. Barquera,et al.  Auto Poisoning of the Respiratory Chain by a Quorum-Sensing-Regulated Molecule Favors Biofilm Formation and Antibiotic Tolerance , 2016, Current Biology.

[29]  Boo Shan Tseng,et al.  Precision-engineering the Pseudomonas aeruginosa genome with two-step allelic exchange , 2015, Nature Protocols.

[30]  David J. Sherman,et al.  Lipopolysaccharide transport to the cell surface: periplasmic transport and assembly into the outer membrane , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  Marcus A. Brubaker,et al.  Alignment of cryo-EM movies of individual particles by optimization of image translations. , 2014, Journal of structural biology.

[32]  E. Baker,et al.  Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation , 2014, Molecular microbiology.

[33]  L. Esser,et al.  Structural analysis of cytochrome bc1 complexes: implications to the mechanism of function. , 2013, Biochimica et biophysica acta.

[34]  L. Gatto,et al.  Effects of traveling wave ion mobility separation on data independent acquisition in proteomics studies. , 2013, Journal of proteome research.

[35]  Renato J. Alves,et al.  The superfamily of heme-copper oxygen reductases: types and evolutionary considerations. , 2012, Biochimica et biophysica acta.

[36]  E. Berry,et al.  Conformationally linked interaction in the cytochrome bc(1) complex between inhibitors of the Q(o) site and the Rieske iron-sulfur protein. , 2011, Biochimica et biophysica acta.

[37]  K. Poole Pseudomonas Aeruginosa: Resistance to the Max , 2011, Front. Microbio..

[38]  D. Linke,et al.  Efficient subfractionation of gram-negative bacteria for proteomics studies. , 2010, Journal of proteome research.

[39]  R. Gennis,et al.  The diheme cytochrome c(4) from Vibrio cholerae is a natural electron donor to the respiratory cbb(3) oxygen reductase. , 2010, Biochemistry.

[40]  H. Michel,et al.  The Structure of cbb3 Cytochrome Oxidase Provides Insights into Proton Pumping , 2010, Science.

[41]  Yafei Huang,et al.  Substrate binding and the catalytic reactions in cbb3-type oxidases: the lipid membrane modulates ligand binding. , 2010, Biochimica et biophysica acta.

[42]  M. Ishii,et al.  Differential expression of multiple terminal oxidases for aerobic respiration in Pseudomonas aeruginosa. , 2009, Environmental microbiology.

[43]  M. Koomey,et al.  Roles of c-type cytochromes in respiration in Neisseria meningitidis. , 2008, Microbiology.

[44]  C. Harwood,et al.  Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration , 2007, Molecular microbiology.

[45]  J. Bundy,et al.  Investigation of the physiological relationship between the cyanide-insensitive oxidase and cyanide production in Pseudomonas aeruginosa. , 2006, Microbiology.

[46]  H. Gray,et al.  Long-range electron transfer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Hinrich W. H. Göhlmann,et al.  A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis , 2005, Science.

[48]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[49]  N. Watmough,et al.  The bacterial cytochrome cbb3 oxidases. , 2004, Biochimica et biophysica acta.

[50]  K. Poole,et al.  Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. , 2001, Journal of molecular microbiology and biotechnology.

[51]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[52]  T. A. Link,et al.  Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. , 1998, Science.

[53]  M. Fry,et al.  Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4'-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthoquinone (566C80). , 1992, Biochemical pharmacology.

[54]  M. Sarewicz,et al.  Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling. , 2015, Physiological reviews.

[55]  J. Rubinstein,et al.  Fabrication of carbon films with ∼ 500nm holes for cryo-EM with a direct detector device. , 2014, Journal of structural biology.

[56]  K. Krab,et al.  Structural and functional analysis of aa3-type and cbb3-type cytochrome c oxidases of Paracoccus denitrificans reveals significant differences in proton-pump design , 2006 .

[57]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.